Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The compression process is one of the most energy-consuming stages of the entire cycle of the carbon dioxide capture and storage. a reduction in the energy consumption of this process may have a significant impact on the overall net efficiency of electricity generation. One method to improve the efficiency of the compression process is to introduce inter-stage cooling, which makes it possible to cause compression to resemble an isothermal process. This paper presents an analysis of the operation of a cooling system of an eight-stage integrally geared compressor working for a 900 MW coal-fired power plant equipped with a CCS system. The research conducted enables rational values of the heat transfer coefficient to be determined for individual inter-stage coolers. a series of calculations is performed in this analysis for different assumptions and for an assumed geometry of the inter-stage coolers. The results obtained allow one to determine both the heat exchange surface area and the pressure drops on the “hot” and “cold” agent sides for individual coolers. Moreover, the presented analysis identifies a number of problems that arise when selecting the configuration and the appropriate parameters of the cooling system.
Czasopismo
Rocznik
Tom
Strony
228--237
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18, Poland
autor
- Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18, Poland
Bibliografia
- [1] T. Chmielniak, S. Lepszy, K. Wójcik, Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant, Energy 45 (1) (2012) 125–133.
- [2] Chmielniak T., Wójcik: Strategic Research Programme. Technologies for obtaining energy. Topic 21-V.1.2. Modelling and optimization of the processes of CO2 capture from exhaust gases for various classes of sorbents. Gliwice, 2012.
- [3] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.- M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Applied Thermal Engineering 30 (1) (2010) 53–62.
- [4] A. Skorek-Osikowska, K. Janusz-Szyma´nska, J. Kotowicz, Modeling and analysis of selected carbon dioxide capture methods in igcc systems, Energy 45 (1) (2012) 92–100.
- [5] R. Doctor, A. Palmer, Transport of co2, ipcc special report on carbon dioxide capture and storage, http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter4.pdf.
- [6] P. L. Bovon, R. Habel, M. T. Berlin, Co2 compression challenges, ASME turbo expo, Montreal 15.
- [7] Wada N., Sato T., Tasaki A., Masutani J., High performance, high reliability re-injection compressors for greenhouse gas (CO2), online: http://www.mhi.co.jp/technology/review/pdf/e411/e411038.pdf.
- [8] L. M. Romeo, I. Bolea, Y. Lara, J. M. Escosa, Optimization of intercooling compression in CO2 capture systems, Applied Thermal Engineering 29 (8) (2009) 1744–1751.
- [9] Witkowski A., Majkut M.: Strategic Research Programme. Technologies for obtaining energy. Topic 25-VI.1.6. The process of CO2 compression. Thermodynamic and systemic optimization for different structures of the CO2 compression installation. Checklist point 25-VI.1.6a, Gliwice 2011.
- [10] Lawlor S.: CO2 Compression Using Supersonic Shock Wave Technology, Ramgen Power System, September 15, 2010.
- [11] C. Botero, M. Finkenrath, C. Belloni, S. Bertolo, M. D’Ercole, E. Gori, R. Tacconelli, Thermoeconomic evaluation of co2 compression strategies for post-combustion co2 capture applications, in: ASME Turbo Expo 2009: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2009, pp. 517–526.
- [12] K. Stępczyńska, H. Łukowicz, S. Dykas, Diverse configurations of the boiler feed pump drive for the ultra-supercritical 900-mw steam plant, International Journal of Energy and Environmental Engineering 3 (1) (2012) 1–9.
- [13] A. A. Koopman, D. A. Bahr, The impact of co2 compressor characteristics and integration in post combustion carbon sequestration comparative economic analysis, in: ASME Turbo Expo 2010: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2010, pp. 601–608.
- [14] Siemens Turbocompressors: STG-GV, STC-GVT Siemens Turbocompressor – Integrally geared, vertically split volute casing, online: www.siemens.com/energy. 2009.
- [15] Aspen Plus, Version 7.0. Computer program, 2008.
- [16] Stechman A.: Projekt chłodni kominowej dla wybranej krajowej elektrowni [Design of a cooling tower for a selected domestic power plant], In-house analysis of BSiPChE Projchłod Sp. z o.o. No 4692.CK, Part 1., Gliwice 2012.
- [17] G. F. Hewitt, Heat exchanger design handbook, Begell House, 1998.
- [18] Baldwin P.: Workshop on Future Large CO2 Compression Systems, Ramgen Power Systems, March 30-31, 2009.
- [19] TEMA – Tubular Exchanger Manufacturers Association, Inc. , online: www.tema.org.
- [20] IAPWS_IF97 – The International Association for the Properties of Water and Steam, online: www.iapws.org.
- [21]http://www.aksteel.com/pdf/markets_products/stainless/austenitic/304_304L_Data_Sheet.pdf.
- [22] W. Pudlik, Wymiana i wymienniki ciepła [Heat exchange and heat exchangers], Wydawnictwo Politechniki Gdańskiej, 1988.
- [23] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 mpa, Journal of physical and chemical reference data 25 (6) (1996) 1509–1596.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1caa129b-09de-4af0-bc3d-6193011aae55