PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości ograniczania śladu węglowego poprzez wykorzystanie systemu zarządzania energią (EMS)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The possibilities of limiting the trace of coal through the use of the Energy Management System (EMS)
Języki publikacji
PL
Abstrakty
EN
Increasing energy efficiency will be essential to achieving the climate goals laid out in Euro-pean Union directives. This is particularly true for industries, whose share of heat and energy consumption, using Poland as an example, is about one-third of the total. This challenge has implications both in reducing greenhouse gas emissions, particularly CO2, but also for main-taining the competitiveness of EU countries' industries in the global market. Implementation in industrial processes of energy management systems - EMS, monitoring energy key perfor-mance indicators - KPI, is a tool for making informed investment decisions, in increasing en-ergy efficiency of enterprises and industrial processes. There is the Industrial Energy Manage-ment System (IEMS), which focuses on energy efficiency in industrial processes, the Building Energy Management System (BEMS) for buildings, such as commercial buildings, and the Home Energy Management System (HEMS), which is becoming increasingly popular for residential users and small properties. The concept of measuring, or rather calculating, the Product Carbon Footprint (PCF) of a man-ufacturing process is derived from the broader concept of Life Cycle Assessment (LCA) in general. The PCF is expressed in Greenhouse Gas (GHG) equivalent units, or CO2-eq. The essence of the PCF calculation is a multi-faceted approach to addressing the sources of GHG emis-sions, from the acquisition of raw materials, their processing with tools and the energy supplied to the process, through the supply chain and transport to the customer. Each of these stages generates a cost in the form of greenhouse gas equivalent (GHG) emissions to the environ-ment, and the sum of these costs is the present carbon footprint (PCF). Typically, the majority of a product's PCF comes from the extraction and pre-processing of the raw material itself.
Rocznik
Strony
32--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • EnobEMS firma INSTALPOL sp. z o.o., Bielska 13, 43-518 Ligota, Poland
  • University of Bielsko-Biala, Department of Environmental Protection and Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • 1. Andersson E., Dernegård H., Wallén M., Thollander P. 2021. Decarbonization of industry: Implementa-tion of energy performance indicators for successful energy management practices in kraft pulp mills. Energy Reports, 7, 1808–1817, DOI: 10.1016/j.egyr.2021.03.009
  • 2. Andersson E., Thollander P. 2019. Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, 229–235. DOI: 10.1016/j.esr.2019.03.004
  • 3. André P., Goepp V.A. 2024. Framework for defining customised KPI in manufacturing systems. [W:] Borangiu T., Trentesaux D., Leitão P., Berrah L., Jimenez JF. (red.) Service oriented, holonic and multi-agent manufacturing systems for industry of the future. Conference paper SOHOMA 2023. Studies in Computational Intelligence, 1136. DOI: 10.1007/978-3-031-53445-4_26
  • 4. Backlund S., Ottosson M., Broberg S. 2012. Energy efficiency potentials and energy management prac-tices in Swedish firms. ECEEE 2012 Summer study on Energy efficiency in industry, 669–677.
  • 5. Batorska S. 2022. Droga polskiego przemysłu do zrównoważonego rozwoju. Automatyka, 3, 1–6.
  • 6. Bukowski M., Śniegocki A. 2014. Electricity and industrial competitiveness. Forum Energii, Warszawa, https://www.forum-energii.eu/en/electricity-and-industrial-competitiveness
  • 7. Chevuturi A., Klingaman N.P., Turner A.G., Guo L., Vidale P.L. 2022. Projected changes in the East Asian hydrological cycle for different levels of future global warming. Atmosphere (Basel), 13(3), 35–115, DOI: 10.3390/atmos13030405
  • 8. Dalio R. 2021. Principles for dealing with the changing world order: Why nations succeed and fail. Avid Reader Press / Simon & Schuster; 1st edition.
  • 9. Derski B. 2024. Prąd już poniżej 30 gr/kWh. WysokieNapięcie.pl, https://wysokienapiecie.pl/97999-prad-juz-ponizej-30-gr-kwh/
  • 10. Domański B. 2015. Współczesne procesy przemian regionalnych przemysłu Polski – próba interpretacji. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 29, 4, 40–53.
  • 11. Domański B., Guzik R., Gwosdz K., Dej M. 2013. The crisis and beyond: The dynamics and restructuring of automotive industry in Poland. International Journal of Automotive Technology and Manage-ment, 13(2), 151–166, DOI: 10.1504/IJATM.2013.052998
  • 12. Dusiło M., 2023. Transformacja Energetyczna w Polsce Edycja 2023. Forum Energii, Warszawa, https://www.forum-energii.eu/transformacja-energetyczna-w-polsce-edycja-2023
  • 13. European Commission 2021. Questions & Answers: Environmental Footprint Methods Recommenda-tion, https://environment.ec.europa.eu/news/environmental-footprint-methods-2021-12-16_en
  • 14. European Commission 2023. Quarterly Report On European Electricity Markets. Market Observatory for Energy DG Energy, https://energy.ec.europa.eu/data-and-analysis/market-analysis_en
  • 15. Eurostat 2022. EU overachieves 2020 renewable energy target - Products Eurostat News – Eurostat, https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20220119-1
  • 16. Eurostat 2023. Energy efficiency statistics - Statistics Explained. Eurostat, https://ec.europa.eu/euro-stat/statistics-explained/index.php?oldid=324721
  • 17. GUS 2023a. Gospodarka paliwowo-energetyczna w latach 2021 i 2022. GUS, https://stat.gov.pl/ob-szary-tematyczne/srodowisko-energia/energia/gospodarka-paliwowo-energetyczna-w-latach-2021-i-2022,4,18.html
  • 18. GUS 2023b. Efektywność wykorzystania energii w latach 2011-2021. GUS, https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/efektywnosc-wykorzystania-energii-w-latach-2011-2021,5,18.html
  • 19. Guzik R., Domański B., Gwosdz K. 2020. Automotive industry dynamics in Central Europe. [W:] New frontiers of the automobile industry, 377–397, DOI: doi:10.1007/978-3-030-18881-8_15
  • 20. Le-Anh T. 2023. Energy benchmark and energy saving potential in the pulp and paper industry. AIMS Energy, 11(6), 1306–1327, DOI: 10.3934/energy.2023059
  • 21. Łukasik J., Jeartowski M., Wajs J. 2023. Optimisation of cooperation of hybrid renewable energy sources with hydrogen energy storage toward the lowest net present cost. Instal, 12, 9–16. DOI: 10.36119/15.2023.12.2
  • 22. Łukasz K. 2024. Przeciętne zatrudnienie w sektorze przedsiębiorstw. RynekPracy.org., https://rynek-pracy.org/statystyki/przecietne-zatrudnienie-w-sektorze-przedsiebiorstw/
  • 23. May G., Barletta I., Stahl B., Taisch M. 2015. Energy management in production: A novel method to develop key performance indicators for improving energy efficiency. Applied Energy, 149, 46–61. DOI: 10.1016/j.apenergy.2015.03.065
  • 24. Poland 2022 Energy Policy Review. International Energy Agency, https://www.iea.org/reports/poland-2022
  • 25. Rocznik Statystyczny Przemysłu 2022. GUS, https://stat.gov.pl/obszary-tematyczne/roczniki-staty-styczne/roczniki-statystyczne/rocznik-statystyczny-przemyslu-2022,5,16.html
  • 26. Rogala B. 2022. Energia odnawialna w Polsce coraz ważniejsza. Osiągnęliśmy cele UE, ale jest haczyk. 300Gospodarka, https://300gospodarka.pl/news/osiagniecie-unijnego-celu-oze-to-nie-wszystko-jest-jeszcze-duzo-do-zrobienia#google_vignette
  • 27. Rüdele K., Wolf M. 2023. Identification and reduction of product carbon footprints: Case studies from the Austrian Automotive Supplier Industry. Sustainability, 15(20), 14911, DOI: 10.3390/su152014911
  • 28. Schulze M., Nehler H., Ottosson M., Thollander P. 2016. Energy management in industry: a systematic review of previous findings and an integrative conceptual framework. Journal of Cleaner Produc-tion, 112, 3692–3708, DOI: 10.1016/j.jclepro.2015.06.060
  • 29. Statement WEC 2003. Renewable energy targets. European Commission, https://energy.ec.eu-ropa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-en-ergy-targets_en
  • 30. Wiech J. 2019. Dzień, w którym stanęła Ziemia. 46 lat temu świat tonął w kryzysie naftowym. Energe-tyka24, https://energetyka24.com/ropa/dzien-w-ktorym-stanela-ziemia-46-lat-temu-swiat-tonal-w-kryzysie-naftowym-komentarz
  • 31. Woszczyk P., Kaczkanowski M. 2022. O korzyściach technologii wychwytu dwutlenku węgla w polskich realiach. Instal, 12, 8–13, DOI: 10.36119/15.2022.12.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ca6d5e8-2334-46dc-bcac-480144af5f29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.