PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metals and Arsenic in Soil and Cereal Grains and Potential Human Risk in the Central Region of Peru

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to analyze the content of heavy metals and arsenic in soil and cereal grains as well as to evaluate the possible human risk in the central region of Peru. The soil samples of corn and barley grains were collected from seven agricultural zones and the concentrations of Cu, Fe, Pb, Zn and As were determined with the method of atomic absorption flame spectrophotometry. PERMANOVA showed that the effect of the type of crop and the sampling zone significantly influence the concentrations of heavy metals and As in soil and corn and barley grains (p < 0.05). PCA for heavy metals and As in soil and grain samples of the cereals studied showed that the first two main components represented 81.03% and 94.77% of the total variance, respectively. Hazard Quotient (HQ) for ingestion was the most significant. The HQ values of Pb and As in crop soils indicated that detrimental health effects are unlikely (HQ < 1). The soil hazard index (HI) values of both crops did not exceed the threshold value of 1 (HI < 1). The carcinogenic risk level (CR) of As from ingestion of corn and barley crop soils contaminated by As was higher in children than in farmers and adults. The bioconcentration factor (BCF) of As was higher in barley grains than in corn grains. The THQ of As exceeded the target value of 1 in 100% of the barley and corn sampling sites. The RC of As in grains exceeded the acceptable risk level of 10–6 in all sampling zones.
Słowa kluczowe
Rocznik
Strony
206--220
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Centro de Investigación en Medicina de Altura y Medio Ambiente, Av. Mariscal Castilla N° 3909, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Centro de Investigación en Medicina de Altura y Medio Ambiente, Av. Mariscal Castilla N° 3909, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Facultad de Ciencias Forestales y del Ambiente, Av. Mariscal Castilla N° 3909, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Facultad de Ciencias Forestales y del Ambiente, Av. Mariscal Castilla N° 3909, Huancayo, Perú
  • Universidad Nacional del Centro del Perú, Facultad de Antropología, Av. Mariscal Castilla N° 3909, Huancayo, Perú
Bibliografia
  • 1. Adekiya, A.O., Oloruntoba, A.P., Ojeniyi, S.O., & Ewulo, B.S. 2018. Heavy metal composition of maize and tomato grown on contaminated soils. Open Agriculture, 3(1), 414–426. https://doi.org/10.1515/opag-2018–0046
  • 2. Agriculture Ministry. 2008. Regional agricultural sector strategic plan 2009 – 2015. Regional Direction of Agriculture Junin. Retrieved from https://www.minagri.gob.pe/portal/download/pdf/conocenos/transparencia/planes_estrategicos_regionales/junin.pdf
  • 3. Al-bagawi, A.H. (2019). Assessment of Trace Elements Contamination of Irrigation Water and Agricultural Soil in Hail Region, Saudi Arabia. IOSR Journal of Applied Chemistry, 12(1), 7–15. https://doi.org/10.9790/5736–1201010715
  • 4. Amin, N., Hussain, A., Alamzeb, S., & Begum, S. 2013. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children , District Mardan , Pakistan. Food Chemistry, 136(3–4), 1515–1523. https://doi.org/10.1016/j.foodchem.2012.09.058
  • 5. Antoniadis, V., Golia, E.E., Liu, Y.T., Wang, S.L., Shaheen, S.M., & Rinklebe, J. 2019. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International, 124, 79–88. https://doi.org/10.1016/j.envint.2018.12.053
  • 6. Antoniadis, V., Shaheen, S.M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. 2017. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200. https://doi.org/10.1016/j.jenvman.2016.04.036
  • 7. Apablaza, H.V., Carrasco, F.C., Sandoval, C.P., & Cortés, C. 2017. Transfer of arsenic in the watersoil-maize system of Zea mays l. of cultivated in the quebrada de Camiña, northern Chile. Revista de la Sociedad Química del Perú, 83(1), 52–64.
  • 8. APHA. 2012.Standard Methods for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA.
  • 9. Arisseto-Bragotto, A.P., Feltes, M.M.C., & Block, J.M. 2017. Food quality and safety progress in the Brazilian food and beverage industry: Chemical hazards. Food Quality and Safety, 1(2), 117–129. https://doi.org/10.1093/fqsafe/fyx009
  • 10. Basha, A.M., Yasovardhan, N., Satyanarayana, S.V., Reddy, G.V. S., & Vinod Kumar, A. 2014. Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India. Toxicology Reports, 1, 505– 512. https://doi.org/10.1016/j.toxrep.2014.07.011
  • 11. Branco, A.P., Amaral de Souza, G., Cardoso, G.V., De Andrade, C.C., Amaral de Lima, W.E., Dias, M.F., Hideto, Y.C.,Bohac, F.E., Guimarăes, G.L. 2015. Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. Journal of Food Composition and Analysis, 37, 143–150. https://doi.org/10.1016/j.jfca.2014.08.004
  • 12. Bui, A.T.K., Nguyen, H.T.H., Nguyen, M.N., Tran, T.H.T., Vu, T.V., Nguyen, C.H., & Reynolds, H.L. 2016. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam. Environmental Monitoring and Assessment, 188(9). https://doi.org/10.1007/s10661–016–5535–5
  • 13. Cai, Q., Long, M., Zhu, M., Zhou, Q., Zhang, L., & Liu, J. 2009. Food chain transfer of cadmium and lead to cattle in a lead – zinc smelter in Guizhou, China. Environmental Pollution, 157(11), 3078–3082. https://doi.org/10.1016/j.envpol.2009.05.048
  • 14. Chaoua, S., Boussaa, S., El Gharmali, A., & Boumezzough, A. 2018. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18(4), 429–436. https://doi.org/10.1016/j.jssas.2018.02.003
  • 15. Claus Henn, B., Ettinger, A.S., Hopkins, M.R., Jim, R., Amarasiriwardena, C., Christiani, D.C., Coult, B.A., Bellinger, D.C., Wright, R.O. 2016. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environmental Health Perspectives, 124(8), 1308–1315. https://doi.org/10.1289/ehp.1510070
  • 16. Doabi, S.A., Karami, M., Afyuni, M., & Yeganeh, M. 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, 163, 153– 164. https://doi.org/10.1016/j.ecoenv.2018.07.057
  • 17. Dórea, J.G. 2019. Environmental exposure to lowlevel lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environmental Research, 177, 108641. https://doi.org/10.1016/j.envres.2019.108641
  • 18. EPA. 2000. Science Policy Council Handbook: Risk characterization. Retrieved from https://www.epa.gov/risk/risk-characterization-handbook
  • 19. EPA. 2004. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. EPA. Washington, DC 20460. https://doi.org/EPA/540/1–89/002
  • 20. Fan, Y., Li, H., Xue, Z., Zhang, Q., & Cheng, F. 2017. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, 102, 367–373. https://doi.org/10.1016/j.ecoleng.2017.02.032
  • 21. FAO/WHO. 1993. Evaluation of certain food additives and contaminants. Technical report series 837. World Health Organization. Geneva. Retrieved from https://apps.who.int/iris/handle/10665/204410
  • 22. FAO/WHO. 2011. Evaluation of certain food additives and contaminants. Food and Agriculture Organization of the United Nations and World Health Organization (Vol. 960). Retrieved from https://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf?sequence=1
  • 23. França, F.C.S.S., Albuuerque, A.M.A., Almeida, A.C., Silveira, P.B., Filho, C., Hazin, C. A., & Honorato, E.V. 2017. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry, 215, 171–176. https://doi.org/10.1016/j.foodchem.2016.07.168
  • 24. Geophysical Institute of Peru. 2010. Seasonal rainfall and temperature forecast in the Mantaro River basin for application in agriculture. Retrieved from https://doi.org/10.1017/CBO9781107415324.004
  • 25. Gottfried, J.L., Harmon, R.S., De Lucia, F.C., & Miziolek, A.W. 2009. Multivariate analysis of laserinduced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochimica Acta – Part B Atomic Spectroscopy, 64(10), 1009–1019. https://doi.org/10.1016/j.sab.2009.07.005
  • 26. Haidong, Z., Biao, H., Linlin, D., Wenyou, H., Saleem, A. M., & Mingkai, Q. 2017. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicology and Environmental Safety, 137, 233–239. https://doi.org/10.1016/j.ecoenv.2016.12.010
  • 27. Hang, X., Wang, H., Zhou, J., Ma, C., Du, C., & Chen, X. 2009. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 157(8–9), 2542–2549. https://doi.org/10.1016/j.envpol.2009.03.002
  • 28. Joint FAO/WHO Food Standards Programme. 2001. Report of the 33rd Session of the Codex Committee on Food Additives and Contaminants. Hague, The Netherlands: © The Authors. All rights reserved. https://doi.org/10.1093/mp/sss069
  • 29. Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7). https://doi.org/10.3390/ijerph13070663
  • 30. Khan, A., Khan, S., Khan, M.A., Aamir, M., Ullah, H., Nawab, J., Rehman, I.U., Shah, J. 2019. Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. International Journal of Environmental Science and Technology, 16(5), 2295–2304. https://doi.org/10.1007/s13762–018–1849-x
  • 31. Khan, M.U., Malik, R.N., & Muhammad, S. 2013. Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere, 93(10), 2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067
  • 32. Kumar, A., & Prasad, M.N.V. 2018. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicology and Environmental Safety, 166(April), 401–418. https://doi.org/10.1016/j.ecoenv.2018.09.113
  • 33. Mendez, M.A., González-Horta, C., SánchezRamírez, B., Ballinas-Casarrubias, L., Cerón, R.H., Morales, D.V., Baeza Terrazas, F.A., Ishida, M.C., Gutiérrez-Torres, D.S., Saunders, R.J., Drobná, Z., Fry, R.C., Buse, J.B., Loomis, D., García-Vargas, G.G., Del Razo, L.M., Stýblo, M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: A cross-sectional study in Chihuahua, Mexico. Environmental Health Perspectives, 124(1), 104–111. https://doi.org/10.1289/ehp.1408742
  • 34. Ministry of Agriculture. 2010. Assessment of surface water resources in the Mantaro River watershed. Lima.
  • 35. Ministry of the Environment. Environmental quality standards for soil in Peru, El Peruano 2017. Peru. Retrieved from http://www.minam.gob.pe/wp-content/uploads/2017/12/DS_011–2017-MINAM.pdf
  • 36. National Water Authority. 2014. Participatory monitoring of water quality in Lake Chinchaycocha (flood season) Junin-Pasco.
  • 37. Ordóñez, A., Álvarez, R., Charlesworth, S., De Miguel, E., & Loredo, J. 2011. Risk assessment of soils contaminated by mercury mining, Northern Spain. Journal of Environmental Monitoring, 13(1), 128–136. https://doi.org/10.1039/c0em00132e
  • 38. Pebe, G., Villa, H., Escate, L., & Cervantes, G. 2008. Blood lead levels in newborns in La Oroya, 2004–2005. Revista Peruana de Medicina Experimental y Salud Publica, 25(4), 355–360.
  • 39. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International. 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
  • 40. Sanders, A. P., Svensson, K., Gennings, C., Burris, H. H., Oken, E., Amarasiriwardena, C., Basnet, P., Pizano-Zarate, M.L., Schnaas, L., Tamayo.Ortiz, M., Baccarelli, A.A., Satlin, L.M., Wright, R.O., Tellez-Rojo, M. M. 2018. Prenatal lead exposure modifies the effect of shorter gestation on increased blood pressure in children. Environment International, 120, 464–471. https://doi.org/10.1016/j.envint.2018.08.038
  • 41. Shah, A. H., Shahid, M., Khalid, S., Natasha, Shabbir, Z., Bakhat, H. F., Murtaza, B., Farooq, A., Akram, M., Shah G.M., Nasim, W. Niazi, N. K. 2020. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health, 42(1), 121–133. https://doi.org/10.1007/s10653–019–00306–6
  • 42. Shahid, M., Dumat, C., Khalid, S., Rabbani, F., Bakr, A., Farooq, U., Amjad M., Abbas, G., Niazi, N.K. 2018. Foliar uptake of arsenic nanoparticles by spinach : an assessment of physiological and human health risk implications Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications, 26, 20121–20131. https://doi.org/10.1007/s11356–018–3867–0
  • 43. Thayer, K. A., Heindel, J. J., Bucher, J. R., & Gallo, M. A. 2012. Role of Environmental Chemicals in Diabetes and Obesity : A National Toxicology Program Workshop Review. Environmental Health Perspectives, 120(6), 779–789.
  • 44. USEPA. 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), 1–1466. https://doi.org/EPA/600/R-090/052F
  • 45. USEPA. 1996. Test methods for evaluating solid waste: physical/chemical methods compendium (SW-846). Retrieved from https://www.epa.gov/hwsw846/table-contents-test-methods-evaluating-solidwaste-physicalchemical-methods-compendium-sw
  • 46. USDA. 2000. Heavy Metal Soil Contamination. United States Departament of Agriculture. Soil quality – Urban Technical Note N° 3. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053279.pdf
  • 47. USEPA. 1995. EPA Region III Risk-Based concentration table. Retrieved from https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/References/9642.PDF
  • 48. USEPA. 2007. Framework for Metals Risk Assessment. EPA 120/R-07/001. Environmental Protection. Retrieved from https://www.epa.gov/risk/framework-metals-risk-assessment
  • 49. USEPA. 2011. Screening Levels (RSL) for chemical contaminants at superfund sites. U.S. Environmental Protection Agency. Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls
  • 50. Wang, N., Han, J., Wei, Y., Li, G., & Sun, Y. 2019. Potential ecological risk and health risk assessment of heavy metals and metalloid in soil around Xunyang mining areas. Sustainability, 11(18). https://doi.org/10.3390/su11184828
  • 51. Woldetsadik, D., Drechsel, P., Keraita, B., Itanna, F., & Gebrekidan, H. 2017. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. International Journal of Food Contamination, 4(1). https://doi.org/10.1186/s40550–017–0053-y
  • 52. Yang, Q. W., Li, H., & Long, F.Y. 2007. Heavy metals of vegetables and soils of vegetable bases in Chongqing, Southwest China. Environmental Monitoring and Assessment, 130(1–3), 271–279. https://doi.org/10.1007/s10661–006–9395–2
  • 53. Yang, Y., Zhang, F.S., Li, H F., & Jiang, R.F. 2009. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management, 90(2), 1117–1122. https://doi.org/10.1016/j.jenvman.2008.05.004
  • 54. Zhao, Q., Wang, Y., Cao, Y., Chen, A., Ren, M., Ge, Y., Yu, Z., Wan, S., Hu, A., Bo, Q., Ruan, L., Chen, H., Qin,S., Chen, W., Hu, C., Tao, F., Xu, D., Xu, J., Wen, L., Li, L. 2014. Science of the Total Environment Potential health risks of heavy metals in cultivated topsoil and grain , including correlations with human primary liver , lung and gastric cancer , in Anhui province , Eastern China. Science of the Total Environmental, 471, 340–347. https://doi.org/10.1016/j.scitotenv.2013.09.086
  • 55. Zhou, H., Yang, W.T., Zhou, X., Liu, L., Gu, J.F., Wang, W.L., Zou, J.L., Tian, T., Peng, P.Q., Liao, B.H. 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International Journal of Environmental Research and Public Health, 13(3). 289. https://doi.org/10.3390/ijerph13030289
  • 56. Zhu, Y., Yu, H., Wang, J., Fang, W., Yuan, J., & Yang, Z. 2007. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 55(3), 1045–1052. https://doi.org/10.1021/jf062971p
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ca5c621-0914-44ec-9a0f-fb2f22986203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.