ON 3-TOTAL EDGE PRODUCT CORDIAL CONNECTED GRAPHS

Jaroslav Ivančo

Communicated by Dalibor Fronček

Abstract. A *k*-total edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize connected graphs of order at least 15 admitting a 3-total edge product cordial labeling.

Keywords: 3-total edge product cordial labelings, 3-TEPC graphs.

Mathematics Subject Classification: 05C78.

1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If *G* is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of *G*, respectively. Cardinalities of these sets are called the *order* and *size* of *G*. The sum of order and size of *G* is denoted by $\tau(G)$, i.e., $\tau(G) = |V(G)| + |E(G)|$. The subgraph of a graph *G* induced by $A \subseteq E(G)$ is denoted by $G[A]$. The set of vertices of *G* adjacent to a vertex $v \in V(G)$ is denoted by $N_G(v)$. The cardinality of this set is called the degree of *v*. As usual $\delta(G)$ stands for the minimum degree among vertices of *G*. For integers *p*, *q* we denote by $[p, q]$ the set of all integers *z* satisfying $p \leq z \leq q$.

Let $k \geq 2$ be an integer. For a graph *G*, a mapping $\varphi : E(G) \to [0, k-1]$ induces a vertex mapping $\varphi^* : V(G) \to [0, k-1]$ defined by

$$
\varphi^*(v) \equiv \prod_{u \in N_G(v)} \varphi(vu) \pmod{k}.
$$

Set

$$
\mu_{\varphi}(i) := |\{v \in V(G) : \varphi^*(v) = i\}| + |\{e \in E(G) : \varphi(e) = i\}|
$$

for each $i \in [0, k-1]$. A mapping $\varphi : E(G) \to [0, k-1]$ is called a *k*-total edge product *cordial* (for short *k*-TEPC) *labeling* of *G* if

$$
|\mu_{\varphi}(i) - \mu_{\varphi}(j)| \le 1 \quad \text{for all} \ \ i, j \in [0, k - 1].
$$

^c Wydawnictwa AGH, Krakow 2017 725

A graph that admits a *k*-TEPC labeling is called a *k-total edge product cordial* (*k*-TEPC) graph.

A *k*-total edge product cordial labeling is a version of the well-known cordial labeling defined by Cahit [2]. Vaidya and Barasara [12] introduced the concept of a 2-TEPC labeling as the edge analogue of a total product cordial labeling defined by Sundaram *et al.* [10]. They called this labeling the total edge product cordial labeling. In [12,13] they proved that cycles C_n for $n \neq 4$, complete graphs K_n for $n > 2$, wheels, fans, double fans and some cycle related graphs are 2-TEPC. In [14] they proved that any graph can be embedded as an induced subgraph of a 2-TEPC graph. An extension of the total product cordial labeling is a *k*-total product cordial labeling introduced by Ponraj *et al.* [6]. In [6–8] they presented some classes of 3-total product cordial graphs. Tenguria and Verma [11] also deal with 3-total product cordial labelings. The 4-total cordial labelings are studied in [9]. Azaizeh *et al.* [1] introduced the concept of *k*-TEPC graphs as the edge analogue of *k*-total product cordial graphs. They proved that paths P_n for $n \geq 4$, cycles C_n for $3 < n \neq 6$, some trees and some unicyclic graphs are 3-TEPC graphs. In [5] there is shown that dense graphs admit *k*-TEPC labelings. We refer the reader to [3] for comprehensive references.

Let us recall two results from [1], which we shall use hereinafter.

Proposition 1.1. *The star* $K_{1,n}$ *,* $n \geq 3$ *, is* 3*-total edge product cordial if and only if* $n \not\equiv 1 \pmod{3}$.

Proposition 1.2. *The cycle* C_n , $n \geq 3$, *is* 3*-total edge product cordial if and only if* $n \notin \{3, 6\}.$

In this paper we will deal with 3-TEPC graphs.

2. AUXILIARY RESULTS

The following claim is evident.

Observation 2.1. *A mapping* φ : $E(G) \to [0, 2]$ *is a* 3*-TEPC labeling of a graph G if and only if*

$$
\left\lceil \frac{\tau(G)}{3} \right\rceil \le \mu_{\varphi}(i) \le \left\lceil \frac{\tau(G)}{3} \right\rceil \quad \text{for each} \ \ i \in [0, 2].
$$

Lemma 2.2. *Let G be a graph without isolated vertices and let t be an integer belonging to* $[0, \tau(G)]$ *. There exists a mapping* $\varphi : E(G) \to [0, 2]$ *satisfying* $\mu_{\varphi}(0) = t$ *if and only if there is a subset A of* $E(G)$ *such that* $\tau(G[A]) = t$ *.*

Proof. Suppose that there is a mapping φ : $E(G) \to [0,2]$ such that $\mu_{\varphi}(0) = t$. Set $A = \{e \in E(G) : \varphi(e) = 0\}$. Since $\varphi^*(v) = 0$ whenever *v* is incident with an edge of *A*, $\mu_{\varphi}(0) = \tau(G[A]).$

On the other hand, let *A* be a subset of $E(G)$. Consider the mapping ψ : $E(G) \rightarrow [0, 2]$ defined by

$$
\psi(e) = \begin{cases} 0 & \text{when } e \in A, \\ 1 & \text{when } e \notin A. \end{cases}
$$

Clearly, $\mu_{\psi}(0) = \tau(G[A]).$

Evidently, $3 \leq \tau(H) \neq 4$ for any graph *H* without isolated vertices. Observation 2.1 and Lemma 2.2 imply the following observation.

Observation 2.3. *Any* 3*-total edge product cordial graph G satisfies*

$$
7 \leq \tau(G) \neq 12.
$$

Given a mapping $\varphi : E(G) \to [0, 2]$. Clearly, $\varphi^*(v) = 2$, $v \in V(G)$, if and only if *v* is incident with the odd number of edges having label 2 and no edge having label 0. Therefore, we immediately have the following claim.

Observation 2.4. *Let* φ : $E(G) \to [0,2]$ *be a mapping. Let* $e' = uv$ *be an edge of G* $such that \varphi(e') = 1.$ The mapping $\psi : E(G) \to [0, 2]$ defined by

$$
\psi(e) = \begin{cases} \varphi(e) \quad & \text{when} \ \ e \neq e', \\ 2 \quad & \text{when} \ \ e = e', \end{cases}
$$

satisfies $\mu_{\psi}(0) = \mu_{\varphi}(0)$ *and*

$$
\mu_{\psi}(2) = \begin{cases} \mu_{\varphi}(2) - 1 & when \varphi^*(u) = \varphi^*(v) = 2, \\ \mu_{\varphi}(2) & when \{\varphi^*(u), \varphi^*(v)\} = \{0, 2\}, \\ \mu_{\varphi}(2) + 1 & when \varphi^*(u) = \varphi^*(v) = 0, \\ \mu_{\varphi}(2) + 1 & when \{\varphi^*(u), \varphi^*(v)\} = \{1, 2\}, \\ \mu_{\varphi}(2) + 2 & when \{\varphi^*(u), \varphi^*(v)\} = \{0, 1\}, \\ \mu_{\varphi}(2) + 3 & when \varphi^*(u) = \varphi^*(v) = 1. \end{cases}
$$

Given a graph *G*. Let *A* be a subset of $E(G)$. An edge $e \in E(G) - A$ is called *AA*-*edge* if its both end vertices belong to *V*(*G*[*A*]). A pendant edge $e \in E(G) - A$ is called *AP-edge* if its end vertex belongs to $V(G[A])$ (clearly, it is the end vertex of degree greater than 1).

Lemma 2.5. Let G be a connected graph and let A be a subset of $E(G)$ such that

$$
\tau(G[A]) \in \left\{ \left\lfloor \frac{\tau(G)}{3} \right\rfloor, \left\lceil \frac{\tau(G)}{3} \right\rceil \right\}.
$$

If G contains either an AA-edge and an AP-edge or two distinct AA-edges, then it is a 3*-TEPC graph.*

Proof. As $\tau(G[A]) \in \{[\tau(G)/3], [\tau(G)/3]\},\}$, there are integers t_1 and t_2 such that $\lceil \tau(G)/3 \rceil \ge t_1 \ge t_2 \ge \lfloor \tau(G)/3 \rfloor$ and $\tau(G[A]) + t_1 + t_2 = \tau(G)$.

Let *T* be a spanning tree of *G* such that $A_T := E(T) \cap A \neq \emptyset$. Then

$$
|E(G) - A| \ge |E(T) - A_T| = |E(T)| - |A_T| = (|V(T)| - 1) - |A_T|.
$$

Since $|A_T| + 1 \leq |V(T[A_T])|$,

$$
|E(G)-A|\geq |V(T)|-|V(T[A_T])|=|V(T)-V(T[A_T])|\geq |V(G)-V(G[A])|.
$$

As

$$
t_1 + t_2 = \tau(G) - \tau(G[A]) = |E(G) - A| + |V(G) - V(G[A])|,
$$

we have $|E(G) - A|$ ≥ t_1 ≥ t_2 .

Suppose that e_A and e'_A are assumed edges of *G* (i.e., e_A is an *AA*-edge and e'_{A} is either an *AP*-edge or an *AA*-edge). Denote by e_1, e_2, \ldots, e_q the edges of $E(G) - (A \cup \{e_A, e'_A\})$ (clearly, $q \ge t_2 - 2$). For every $i \in [0, q]$ define a set B_i by *B*₀ = ∅ and *B*_{*i*} = *B*_{*i*-1} ∪ { e_i }. Let φ_i , for $i \in [0, q]$, be a mapping from *E*(*G*) to [0, 2] given by

$$
\varphi_i(e) = \begin{cases} 0 & \text{when } e \in A, \\ 2 & \text{when } e \in B_i, \\ 1 & \text{otherwise.} \end{cases}
$$

Clearly, $\mu_{\varphi_i}(0) = \tau(G[A]),$ for every $i \in [0, q]$.

Denote by *p* the largest integer of $[0, q]$ such that $\mu_{\varphi_i}(2) \leq t_2$ for each $i \leq p$. If $p < q$, then by Observation 2.4, $\mu_{\varphi_p}(2) + 3 \ge \mu_{\varphi_{p+1}}(2) > t_2$. Therefore, $t_2 - 2 \le \mu_{\varphi_p}(2) \le t_2$. If $p = q$, then

$$
\mu_{\varphi_p}(2) \ge |\{e : \varphi_p(e) = 2\}| = |B_p| = p = q \ge t_2 - 2.
$$

So, again $t_2 - 2 \leq \mu_{\varphi_p}(2) \leq t_2$. Now define a set $B \subset E(G)$ by

$$
B = \begin{cases} B_p & \text{when } \mu_{\varphi_p}(2) = t_2, \\ B_p \cup \{e_A\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 1, \\ B_p \cup \{e_A'\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 2 \text{ and } e_A' \text{ is an } AP\text{-edge,} \\ B_p \cup \{e_A, e_A'\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 2 \text{ and } e_A' \text{ is an } AA\text{-edge.} \end{cases}
$$

It is easy to see that a mapping $\psi : E(G) \to [0,2]$ defined by

$$
\psi(e) = \begin{cases} 0 & \text{when } e \in A, \\ 2 & \text{when } e \in B, \\ 1 & \text{otherwise} \end{cases}
$$

satisfies $\mu_{\psi}(0) = \tau(G[A]), \mu_{\psi}(2) = t_2$ and $\mu_{\psi}(1) = t_1$. Thus, ψ is a desired 3-TEPC labeling of *G*. \Box

Lemma 2.6. *Let G be a connected graph of size at least* $5(|V(G)| - 1)$ *. Then G is a* 3*-TEPC graph.*

Proof. Since $|E(G)| \ge 5(|V(G)| - 1)$, *G* is a graph of order at least 10 and $\tau(G) \ge 55$. As *G* is a connected graph, there is a spanning tree *T* of *G*. Moreover, for *G* we have

$$
\tau(G) = |V(G)| + |E(G)| \ge 3(2|V(G)| - 1) - 2.
$$

Therefore, $\lceil \tau(G)/3 \rceil \geq 2|V(G)| - 1$. Thus, there exists a set $A \subset E(G)$ such that $E(T) \subseteq A$ and $|A| = \lceil \tau(G)/3 \rceil - |V(G)|$. Then $\tau(G[A]) = \lceil \tau(G)/3 \rceil$, every edge of $E(G) - A$ is an *AA*-edge and

$$
|E(G) - A| = \tau(G) - (|V(G)| + |A|) = \tau(G) - \lceil \tau(G)/3 \rceil \ge 36 > 2.
$$

According to Lemma 2.5, *G* is a 3-TEPC graph.

 \Box

A *matching* in a graph is a set of pairwise nonadjacent edges. A *maximum matching* is a matching that contains the largest possible number of edges. The number of edges in a maximum matching of a graph *G* is denoted by $\alpha(G)$.

Lemma 2.7. Let *G* be a connected graph such that $16 \leq \tau(G) \neq 3 \pmod{6}$, $\delta(G) = 1$ $and \alpha(G) \geq 2$. Then *G* is a 3-TEPC graph.

Proof. As $16 \leq \tau(G) \neq 3 \pmod{6}$, *G* is a graph of order at least 6 and there is an even integer $t_0 \geq 6$ such that $t_0 \in \{[\tau(G)/3], [\tau(G)/3]\}$. Moreover, according to Lemma 2.6, it is enough to consider $|E(G)| < 5(|V(G)|-1)$. Then, $\tau(G) < 6|V(G)|-5$ and $t_0 \leq 2|V(G)| - 2$. As t_0 is even, there is a positive integer *s* such that $t_0 = 2s + 2$. Clearly, $2 \leq s \leq |V(G)| - 2$.

Since $\delta(G) = 1$, there is a pendant vertex in *G*. Suppose that *w* is a pendant vertex of *G* such that $\alpha(G - w)$ is the largest possible. If $\alpha(G - w) = 1$, then $G - w$ is a star of order at least 5 and *w* is adjacent to a pendant vertex of the star. Clearly, for any pendant vertex $x \neq w$ in *G*, we have $\alpha(G - x) = 2 > \alpha(G - w)$, a contradiction. Thus, $\alpha(H) \geq 2$, for *H* := *G* − *w*. So, there are two nonadjacent edges in *H*. Any minimal connected subgraph of *H* containing these edges is a path of length at least 3. Let *P* be a path of length 3 in *H* such that the distance between *w* and *P* (a vertex of *P*) in the graph G is the smallest possible. If w is adjacent to no vertex of P , then there is a path of length at least 2 between *w* and *P* and a continuing path of length at least 2 in *P*. So, there is a path of length 3 in *H* such that *w* is adjacent to a vertex of this path, a contradiction. Therefore, *w* is adjacent to a vertex of *P*.

Denote by e_1, e_2, e_3 the edges of *P* in such a way that e_1 and e_3 are independent edges of *P*. Clearly, *e*¹ and *e*³ are also independent edges of *G*. Moreover, there is a spanning tree *T* of *H* which contains *P*. Set $p = |V(G)| - 2$ and denote by e_4, \ldots, e_p the edges of $E(T) - \{e_1, e_2, e_3\}$ in such a way that the subgraph of *H* induced by ${e_1, \ldots, e_j}$ is a connected graph for each $j \in [1, p]$. The edge of *G* incident with *w* denote by e_0 . Clearly, the subgraph of *G* induced by $\{e_i : i \in [0, p]\}$ is its spanning tree. Set

$$
A = \begin{cases} \{e_1, e_3, e_4, \dots, e_{s+1}\} & \text{when } s < p, \\ \{e_0, e_1, e_3, e_4, \dots, e_p\} & \text{when } s = p. \end{cases}
$$

The graph which we obtain from $G[A]$ by adding the edge e_2 is a tree. Therefore, $G[A]$ is a forest with two connected components and so $|E(G[A])| = s$, $|V(G[A])| = s + 2$, i.e., $\tau(G[A]) = t_0$. Moreover, e_0 is an *AP*-edge and e_2 is an *AA*-edge when $s < p$, and every edge of $E(G) - A$ is an *AA*-edge when $s = p$. According to Lemma 2.5, *G* is a 3-TEPC graph a 3-TEPC graph.

Lemma 2.8. Let *G* be a connected graph such that $25 \leq \tau(G) \neq 0 \pmod{6}$ and $\alpha(G) \geq 3$ *. Then G is a* 3-*TEPC graph.*

Proof. As $25 \leq \tau(G) \neq 0 \pmod{6}$, *G* is a graph of order at least 7 and there is an odd integer $t_0 \geq 9$ such that $t_0 \in \{[\tau(G)/3], [\tau(G)/3]\}$. Moreover, according to Lemma 2.6, it is enough to consider $|E(G)| < 5(|V(G)|-1)$. Then, $\tau(G) < 6|V(G)|-5$ and $t_0 \leq 2|V(G)| - 3$. As t_0 is odd, there is a positive integer *s* such that $t_0 = 2s + 3$. Clearly, $3 \leq s \leq |V(G)| - 3$.

Since $\alpha(G) \geq 3$, there are three pairwise nonadjacent edges in *G*. Any minimal connected subgraph of *G* containing these edges is a tree whose each pendant edge is some of these three edges. Therefore, it is either a path of length at least 5 or a tree with precisely three (pairwise nonadjacent) pendant edges. In the both cases there exists a subtree *T* of size 5 with $\alpha(T) = 3$.

The edges of *T* denote by e_i , $i \in [1, 5]$, in such a way that $\{e_1, e_3, e_5\}$ is a matching in *T* (also in *G*) and subgraphs induced by $\{e_1, e_2, e_3\}$ and $\{e_3, e_4, e_5\}$ are connected. Moreover, there is a spanning tree T' of *G* which contains *T*. Put $p = |V(G)| - 1$ and denote by e_6, \ldots, e_p the edges of $E(T') - E(T)$ in such a way that the subgraph of *G* induced by $\{e_1, \ldots, e_i\}$ is a connected graph for each $j \in [1, p]$. Evidently, the subgraph of *G* induced by $\{e_i : i \in [1, p]\}$ is its spanning tree. Set $A = \{e_1, e_3, e_5, e_6, \dots e_{s+2}\}.$ The graph which we obtain from $G[A]$ by adding the edges e_2 and e_4 is a tree. Therefore, $G[A]$ is a forest with three connected components and so $|E(G[A])| = s$, $|V(G[A])| = s + 3$, i.e., $\tau(G[A]) = t_0$. Moreover, e_2 and e_4 are *AA*-edges. Thus, according to Lemma 2.5 G is a 3-TEPC graph according to Lemma 2.5, *G* is a 3-TEPC graph.

Lemma 2.9. *Let G be a connected graph containing a cycle of length k. If*

$$
\max\{16, 6k - 8\} \le \tau(G) \not\equiv 3 \pmod{6},
$$

then G is a 3*-TEPC graph.*

Proof. As $16 \leq \tau(G) \neq 3 \pmod{6}$, *G* is a graph of order at least 6 and there is an even integer $t_0 \geq 6$ such that $t_0 \in \{ \lfloor \tau(G)/3 \rfloor, \lceil \tau(G)/3 \rceil \}$. Moreover, according to Lemma 2.6, it is enough to consider $|E(G)| < 5(|V(G)|-1)$. Then, $\tau(G) < 6|V(G)|-5$ and $t_0 \leq 2|V(G)| - 2$. As t_0 is even, there is a positive integer *s* such that $t_0 = 2s - 2$. Clearly, $\max\{4, k\} \leq s \leq |V(G)|$.

Suppose that *C* is an assumed cycle of length *k* in *G*. As *G* is connected and $s \geq k$, there is a connected subgraph of *G* on *s* vertices which contains *C*. Let *H* be such subgraph with the minimal number of edges. Clearly, *H* is an unicyclic graph of order (and size) *s*. Deleting any edge $e \in E(C)$ from *H* we get a tree $H - \{e\}$ of order *s*. Evidently, there is an edge $e_1 \in E(C)$ such that $H - \{e_1\}$ is no star. Then there is an edge e_2 in $H - \{e_1\}$ which is not a pendant edge of $H - \{e_1\}$. Now consider the set $A := E(H) - \{e_1, e_2\} \subset E(G)$. Obviously, $G[A] = H - \{e_1, e_2\}$ and so $\tau(G[A]) = 2s - 2 = t_0$. As e_1 and e_2 are *AA*-edges of *G*, by Lemma 2.5, *G* is a 3-TEPC graph. graph.

Corollary 2.10. Let G be a connected graph containing a cycle of length k. If $k \geq 6$ $\{and \tau(G) \geq 6k - 11, \text{ then } G \text{ is a 3-TEPC graph.}\}$

Proof. Since *G* contains a cycle of length at least 6, $\alpha(G) \geq 3$. Moreover, $\tau(G) \geq$ $6k - 11 \geq 25$ and by Lemma 2.8, *G* is a 3-total edge product cordial graph for $\tau(G) \not\equiv 0 \pmod{6}$.

Now suppose that $\tau(G) \equiv 0 \pmod{6}$. Then $\tau(G) \ge 6k - 6 > 16$ and according to nma 2.9. *G* is a 3-TEPC graph. Lemma 2.9, *G* is a 3-TEPC graph.

Lemma 2.11. *Let G be a connected graph containing a path of length* 7*.* If $\tau(G) > 30$, *then G is a* 3*-TEPC graph.*

Proof. As *G* contains a path of length 7, $\alpha(G) \geq 4$. Moreover, $\tau(G) > 30$ and by Lemma 2.8, *G* is a 3-TEPC graph for $\tau(G) \not\equiv 0 \pmod{6}$.

Now suppose that $\tau(G) \equiv 0 \pmod{6}$. According to Lemma 2.6, it is enough to consider $|E(G)| < 5(|V(G)| - 1)$. Then, $36 \le \tau(G) \le 6|V(G)| - 6$. As $\tau(G)/3$ is even, there is an integer *s* such that $\tau(G)/3 = 2s + 4$. Clearly, $4 \leq s \leq |V(G)| - 3 = p - 2$, where $p = |V(G)| - 1$.

Let *P* be an assumed path of length 7 in *G*. Denote by e_1, e_2, \ldots, e_7 the edges of *P* in such a way that e_i and e_{i+1} are adjacent edges for each $i \in [1, 6]$. Moreover, there is a spanning tree *T* of *G* which contains *P*. If $p > 7$, then denote by e_8, \ldots, e_p the edges of $E(T) - E(P)$ in such a way that the subgraph of *G* induced by $\{e_1, \ldots, e_j\}$ is a connected graph (tree) for each $j \in [1, p]$. Set

$$
A = \begin{cases} \{e_i : i \in [1, s+3] - \{2, 4, 6\} \} & \text{when } s \le p-3, \\ \{e_i : i \in [1, p] - \{2\} \} & \text{when } s = p-2. \end{cases}
$$

If $s \leq p-3$, then $G[A]$ is a forest with four connected components and so $|E(G[A])| = s$, $|V(G[A])| = s + 4$, i.e., $\tau(G[A]) = \tau(G)/3$. Moreover, e_2 and e_4 are *AA*-edges and so, according to Lemma 2.5, *G* is a 3-TEPC graph. Similarly, if $s = p - 2$, then $G[A]$ is a forest with two connected components and so $|E(G[A])| = p-1$, $|V(G[A])| = p+1$, i.e., $\tau(G[A]) = 2p = \tau(G)/3$. As $V(G[A]) = V(G)$, every edge of $E(G) - A$ is an *AA*-edge.
Therefore by Lemma 2.5 *G* is a 3-TEPC graph Therefore, by Lemma 2.5, *G* is a 3-TEPC graph.

3. MAIN RESULTS

Theorem 3.1. *Let T be a tree of order at least* 12*. Then T is a* 3*-TEPC graph if and only if* $T \neq K_{1,n}$ *for* $n \equiv 1 \pmod{3}$ *.*

Proof. According to Proposition 1.1, it is enough to prove that *T* is a 3-TEPC graph when $\alpha(T) > 1$.

As $\delta(T) = 1$, $\alpha(T) \geq 2$ and $\tau(T) = 2|V(T)|-1 \geq 23$, by Lemma 2.7, *T* is a 3-TEPC graph when $\tau(T) \not\equiv 3 \pmod{6}$.

Suppose now that $\tau(T) \equiv 3 \pmod{6}$. Thus, $14 \leq |V(T)| \equiv 2 \pmod{3}$ and $\tau(T) \geq 27$. If $\alpha(T) \geq 3$ then, according to Lemma 2.8, *T* is a 3-TEPC graph. If $\alpha(T) = 2$ then, by Kőnig theorem [4], there are vertices u_0 and v_0 such that every edge of *T* is incident with at least one of this vertices. Therefore, there are two edge-disjoint stars S_u and S_v (subgraphs of *T*) such that $E(T) = E(S_u) \cup E(S_v)$. Let

$$
V(S_u) = \{u_i : i \in [0, r]\},
$$

\n
$$
E(S_u) = \{u_0 u_j : j \in [1, r]\},
$$

\n
$$
V(S_v) = \{v_i : i \in [0, s]\},
$$

\n
$$
E(S_v) = \{v_0 v_j : j \in [1, s]\},
$$

where $2 \leq s \leq r$ and either $v_1 = u_0$ (when $u_0v_0 \in E(T)$) or $v_1 = u_1$ (when $u_0v_0 \notin E(T)$). Clearly, $r + s \equiv 1 \pmod{3}$ in this case. Thus, there is a positive integer *t* such that $r + s = 3t + 1$. Evidently, $r > t$. Let q be the largest even integer satisfying $q \leq \min\{s, t+1\}$. Clearly, $q \geq 2$. Now consider the mapping φ from $E(T)$ to [0, 2] given by

$$
\varphi(e) = \begin{cases}\n0 & \text{when } e = u_0 u_i, i \in [1, t], \\
2 & \text{when } e = v_0 v_i, i \in [1, q], \\
2 & \text{when } e = u_0 u_i, i \in [1 + t, 1 + 2t - q], \\
1 & \text{otherwise.} \n\end{cases}
$$

It is easy to see that for any $w \in V(T)$ we have

$$
\varphi^*(w) = \begin{cases}\n0 & \text{when } w = u_i, i \in [0, t], \\
2 & \text{when } w = v_i, i \in [2, q], \\
2 & \text{when } w = u_i, i \in [1 + t, 1 + 2t - q], \\
1 & \text{otherwise.} \n\end{cases}
$$

Thus, $\mu_{\varphi}(i) = 2t + 1$ for each $i \in [0, 2]$, i.e., φ is a 3-TEPC labeling of *T*. \Box

Theorem 3.2. *Let G be an unicyclic graph of order at least* 8*. Then G is a* 3*-TEPC graph.*

Proof. According to Proposition 1.2, it is enough to consider that *G* is not a cycle, i.e., $\delta(G) = 1$. Moreover, $\alpha(G) \geq 2$ and $\tau(G) = 2|V(G)| \geq 16$ in this case. Therefore, by Lemma 2.7, *G* is a 3-TEPC graph. by Lemma 2.7, *G* is a 3-TEPC graph.

Theorem 3.3. *Let G be a connected graph of order at least* 15*. Then G is a* 3*-TEPC graph if and only if* $G \neq K_{1,n}$ *for* $n \equiv 1 \pmod{3}$ *.*

Proof. According to Theorem 3.1 and Theorem 3.2, it is enough to prove that *G* is a 3-TEPC graph when $|E(G)| > |V(G)|$. By Lemma 2.6, it is sufficient to consider $|V(G)| < |E(G)| < 5(|V(G)| - 1).$

As $|E(G)| > |V(G)|$, $\tau(G) \geq 15 + 16 = 31$ and there are at least two distinct cycles in *G*. The length of a longest cycle in *G* denote by ℓ . Consider the following cases.

Case A. $\ell \geq 8$. In this case, *G* contains a path of length 7. Therefore, by Lemma 2.11, *G* is a 3-TEPC graph.

Case B. $6 \leq \ell \leq 7$. According to Corollary 2.10, *G* is a 3-TEPC graph.

Case C. $\ell = 5$. The edges of a cycle of length 5 together with an edge which is not a chord of this cycle contain a 3-matching. Thus, $\alpha(G) \geq 3$ in this case. Therefore, by Lemma 2.9 (when $\tau(G) \not\equiv 3 \pmod{6}$) or by Lemma 2.8 (when $\tau(G) \equiv 3 \pmod{6}$), *G* is a 3-TEPC graph.

Case D. $\ell \leq 4$. According to Lemma 2.9, *G* is a 3-TEPC graph whenever $\tau(G) \neq 3$ (mod 6). Thus, next suppose that $\tau(G) \equiv 3 \pmod{6}$. Then there is an integer *t* such that $\tau(G) = 6t + 3$. As $|V(G)| < |E(G)| < 5(|V(G)| - 1)$, $30 \le 2|V(G)| < \tau(G)$ $6|V(G)|-5$ and consequently $5 \le t \le |V(G)|-1$.

By Lemma 2.8, *G* is a 3-TEPC graph when $\alpha(G) \geq 3$. So, it remains to consider that $\alpha(G) = 2$.

Let C and C' be two distinct cycles in G . If C and C' are vertex disjoint, then for any edge of a path joining C and C' there are two edges (the first from C and

the second from C' such that they altogether form a 3-matching, a contradiction to $\alpha(G) = 2$. So, $V(C) \cap V(C') \neq \emptyset$. Moreover, if both cycles have length 4, then at least one end vertex of any edge of C' belongs to $V(C)$. Therefore, the subgraph of G induced by $E(C) \cup E(C')$ is a connected graph of order at most 6 with at least two distinct cycles. Then there is a connected subgraph *H* of *G* such that $|V(H)| = 6$ and $|E(H)| = 7$. Let T_H be a spanning tree of *H*. Then there are two distinct edges a_1 and a_2 of *H* such that $E(H) = E(T_H) \cup \{a_1, a_2\}$. As *G* is connected, there is a spanning tree *T* of *G* which contains T_H . Denote by e_1, e_2, \ldots, e_p ($p = |V(G)| - 1$) the edges of *T* in such a way that $e_i \in E(T_H)$ for each $i \in [1, 5]$ and the subgraph of *G* induced by ${e_1, \ldots, e_j}$ is a connected graph (tree) for each $j \in [1, p]$. Set

$$
A = \big\{e_i : i \in [1, t]\big\}.
$$

Then $G[A]$ is a tree and so $|E(G[A])| = t$, $|V(G[A])| = t + 1$. Therefore, $\tau(G[A]) =$ $2t + 1 = \tau(G)/3$. Moreover, a_1 and a_2 are *AA*-edges and so, according to Lemma 2.5, *G* is a 3-TEPC graph. \Box

We believe that the following conjecture is true.

Conjecture 3.4. *Let G be a connected graph of order at least* 4*. Then G is a* 3*-TEPC graph if and only if*

$$
\tau(G) \neq 12 \quad and \quad G \neq K_{1,n} \text{ for } n \equiv 1 \pmod{3}.
$$

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.

REFERENCES

- [1] A. Azaizeh, R. Hasni, A. Ahmad, G.-C. Lau, *3-total edge product cordial labeling of graphs*, Far East Journal of Mathematical Sciences **96** (2015), 193–209.
- [2] I. Cahit, *Cordial Graphs: A weaker version of graceful and harmonious graphs*, Ars Combin. **23** (1987), 201–207.
- [3] J.A. Gallian, *A dynamic survey of graph labeling*, Electronic J. Combinatorics (2016), $#DS6.$
- [4] D. König, *Graphen und Matrizen*, Mat. Fiz. Lapok **38** (1931), 116–119.
- [5] J. Ivančo, *On k-total edge product cordial graphs*, Australas. J. Combin. **67** (2017), 476–485.
- [6] R. Ponraj, M. Sundaram, M. Sivakumar, *k-total product cordial labeling of graphs*, Appl. Appl. Math.: An Inter. J. **7** (2012), 708–716.
- [7] R. Ponraj, M. Sivakumar, M. Sundaram, *On 3-total product cordial graphs*, Int. Math. Forum **7** (2012), no. 29–32, 1537–1546.
- [8] R. Ponraj, M. Sivakumar, M. Sundaram, *New families of 3-total product cordial graphs*, Inter. J. Math. Archive **3** (2012) 5, 1985–1990.
- [9] M. Sivakumar, *On 4-total product cordiality of some corona graphs*, Internat. J. Math. Combin. **3** (2016), 99–106.
- [10] M. Sundaram, R. Ponraj, S. Somasundaram, *Total product cordial labeling of graphs*, Bull. Pure Appl. Sci. Sect. E, Math. Stat. **25** (2006), 199–203.
- [11] A. Tenguria, R. Verma, 3*-total super product cordial labeling for some graphs*, Internat. J. Science and Research **4** (2015) 2, 557–559.
- [12] S.K. Vaidya, C.M. Barasara, *Total edge product cordial labeling of graphs*, Malaya Journal of Mathematik **3(1)** (2013), 55–63.
- [13] S.K. Vaidya, C.M. Barasara, *On total edge product cordial labeling*, Internat. J. Math. Scientific Comput. **3(2)** (2013), 12–16.
- [14] S.K. Vaidya, C.M. Barasara, *On embedding and NP-complete problems of equitable labelings*, IOSR-JM **11** (2015), 80–85.

Jaroslav Ivančo jaroslav.ivanco@upjs.sk

P.J. Šafárik University Institute of Mathematics Jesenná 5, 041 54 Košice, Slovakia

Received: February 2, 2016. Revised: January 26, 2017. Accepted: January 27, 2017.