ON 3-TOTAL EDGE PRODUCT CORDIAL CONNECTED GRAPHS

Jaroslav Ivančo

Communicated by Dalibor Fronček

Abstract. A *k*-total edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize connected graphs of order at least 15 admitting a 3-total edge product cordial labeling.

Keywords: 3-total edge product cordial labelings, 3-TEPC graphs.

Mathematics Subject Classification: 05C78.

1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If G is a graph, then V(G) and E(G) stand for the vertex set and edge set of G, respectively. Cardinalities of these sets are called the *order* and *size* of G. The sum of order and size of G is denoted by $\tau(G)$, i.e., $\tau(G) = |V(G)| + |E(G)|$. The subgraph of a graph G induced by $A \subseteq E(G)$ is denoted by G[A]. The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_G(v)$. The cardinality of this set is called the degree of v. As usual $\delta(G)$ stands for the minimum degree among vertices of G. For integers p, q we denote by [p, q] the set of all integers z satisfying $p \leq z \leq q$.

Let $k \geq 2$ be an integer. For a graph G, a mapping $\varphi : E(G) \to [0, k-1]$ induces a vertex mapping $\varphi^* : V(G) \to [0, k-1]$ defined by

$$\varphi^*(v) \equiv \prod_{u \in N_G(v)} \varphi(vu) \pmod{k}.$$

Set

$$\mu_{\varphi}(i) := |\{v \in V(G) : \varphi^*(v) = i\}| + |\{e \in E(G) : \varphi(e) = i\}|$$

for each $i \in [0, k-1]$. A mapping $\varphi : E(G) \to [0, k-1]$ is called a k-total edge product cordial (for short k-TEPC) labeling of G if

$$|\mu_{\varphi}(i) - \mu_{\varphi}(j)| \le 1 \quad \text{for all} \quad i, j \in [0, k-1].$$

© Wydawnictwa AGH, Krakow 2017

725

A graph that admits a k-TEPC labeling is called a k-total edge product cordial (k-TEPC) graph.

A k-total edge product cordial labeling is a version of the well-known cordial labeling defined by Cahit [2]. Vaidya and Barasara [12] introduced the concept of a 2-TEPC labeling as the edge analogue of a total product cordial labeling defined by Sundaram *et al.* [10]. They called this labeling the total edge product cordial labeling. In [12,13] they proved that cycles C_n for $n \neq 4$, complete graphs K_n for n > 2, wheels, fans, double fans and some cycle related graphs are 2-TEPC. In [14] they proved that any graph can be embedded as an induced subgraph of a 2-TEPC graph. An extension of the total product cordial labeling is a k-total product cordial labeling introduced by Ponraj *et al.* [6]. In [6–8] they presented some classes of 3-total product cordial graphs. Tenguria and Verma [11] also deal with 3-total product cordial labelings. The 4-total cordial labelings are studied in [9]. Azaizeh *et al.* [1] introduced the concept of k-TEPC graphs as the edge analogue of k-total product cordial graphs. They proved that paths P_n for $n \geq 4$, cycles C_n for $3 < n \neq 6$, some trees and some unicyclic graphs are 3-TEPC graphs. In [5] there is shown that dense graphs admit k-TEPC labelings. We refer the reader to [3] for comprehensive references.

Let us recall two results from [1], which we shall use hereinafter.

Proposition 1.1. The star $K_{1,n}$, $n \ge 3$, is 3-total edge product cordial if and only if $n \not\equiv 1 \pmod{3}$.

Proposition 1.2. The cycle C_n , $n \ge 3$, is 3-total edge product cordial if and only if $n \notin \{3, 6\}$.

In this paper we will deal with 3-TEPC graphs.

2. AUXILIARY RESULTS

The following claim is evident.

Observation 2.1. A mapping $\varphi : E(G) \to [0,2]$ is a 3-TEPC labeling of a graph G if and only if

$$\left\lfloor \frac{\tau(G)}{3} \right\rfloor \le \mu_{\varphi}(i) \le \left\lceil \frac{\tau(G)}{3} \right\rceil \quad for \ each \ i \in [0, 2].$$

Lemma 2.2. Let G be a graph without isolated vertices and let t be an integer belonging to $[0, \tau(G)]$. There exists a mapping $\varphi : E(G) \to [0, 2]$ satisfying $\mu_{\varphi}(0) = t$ if and only if there is a subset A of E(G) such that $\tau(G[A]) = t$.

Proof. Suppose that there is a mapping $\varphi : E(G) \to [0,2]$ such that $\mu_{\varphi}(0) = t$. Set $A = \{e \in E(G) : \varphi(e) = 0\}$. Since $\varphi^*(v) = 0$ whenever v is incident with an edge of A, $\mu_{\varphi}(0) = \tau(G[A])$.

On the other hand, let A be a subset of E(G). Consider the mapping $\psi: E(G) \to [0,2]$ defined by

$$\psi(e) = \begin{cases} 0 & \text{when } e \in A, \\ 1 & \text{when } e \notin A. \end{cases}$$

Clearly, $\mu_{\psi}(0) = \tau(G[A]).$

Evidently, $3 \le \tau(H) \ne 4$ for any graph H without isolated vertices. Observation 2.1 and Lemma 2.2 imply the following observation.

Observation 2.3. Any 3-total edge product cordial graph G satisfies

$$7 \le \tau(G) \ne 12.$$

Given a mapping $\varphi : E(G) \to [0, 2]$. Clearly, $\varphi^*(v) = 2, v \in V(G)$, if and only if v is incident with the odd number of edges having label 2 and no edge having label 0. Therefore, we immediately have the following claim.

Observation 2.4. Let $\varphi : E(G) \to [0,2]$ be a mapping. Let e' = uv be an edge of G such that $\varphi(e') = 1$. The mapping $\psi : E(G) \to [0,2]$ defined by

$$\psi(e) = \begin{cases} \varphi(e) & \text{when } e \neq e', \\ 2 & \text{when } e = e', \end{cases}$$

satisfies $\mu_{\psi}(0) = \mu_{\varphi}(0)$ and

$$\mu_{\psi}(2) = \begin{cases} \mu_{\varphi}(2) - 1 & \text{when } \varphi^{*}(u) = \varphi^{*}(v) = 2, \\ \mu_{\varphi}(2) & \text{when } \{\varphi^{*}(u), \varphi^{*}(v)\} = \{0, 2\}, \\ \mu_{\varphi}(2) + 1 & \text{when } \varphi^{*}(u) = \varphi^{*}(v) = 0, \\ \mu_{\varphi}(2) + 1 & \text{when } \{\varphi^{*}(u), \varphi^{*}(v)\} = \{1, 2\}, \\ \mu_{\varphi}(2) + 2 & \text{when } \{\varphi^{*}(u), \varphi^{*}(v)\} = \{0, 1\}, \\ \mu_{\varphi}(2) + 3 & \text{when } \varphi^{*}(u) = \varphi^{*}(v) = 1. \end{cases}$$

Given a graph G. Let A be a subset of E(G). An edge $e \in E(G) - A$ is called AA-edge if its both end vertices belong to V(G[A]). A pendant edge $e \in E(G) - A$ is called AP-edge if its end vertex belongs to V(G[A]) (clearly, it is the end vertex of degree greater than 1).

Lemma 2.5. Let G be a connected graph and let A be a subset of E(G) such that

$$\tau(G[A]) \in \left\{ \left\lfloor \frac{\tau(G)}{3} \right\rfloor, \left\lceil \frac{\tau(G)}{3} \right\rceil \right\}$$

If G contains either an AA-edge and an AP-edge or two distinct AA-edges, then it is a 3-TEPC graph.

Proof. As $\tau(G[A]) \in \{\lfloor \tau(G)/3 \rfloor, \lceil \tau(G)/3 \rceil\}$, there are integers t_1 and t_2 such that $\lceil \tau(G)/3 \rceil \ge t_1 \ge t_2 \ge \lfloor \tau(G)/3 \rfloor$ and $\tau(G[A]) + t_1 + t_2 = \tau(G)$.

Let T be a spanning tree of G such that $A_T := E(T) \cap A \neq \emptyset$. Then

$$|E(G) - A| \ge |E(T) - A_T| = |E(T)| - |A_T| = (|V(T)| - 1) - |A_T|.$$

Since $|A_T| + 1 \leq |V(T[A_T])|$,

$$|E(G) - A| \ge |V(T)| - |V(T[A_T])| = |V(T) - V(T[A_T])| \ge |V(G) - V(G[A])|.$$

$$t_1 + t_2 = \tau(G) - \tau(G[A]) = |E(G) - A| + |V(G) - V(G[A])|,$$

we have $|E(G) - A| \ge t_1 \ge t_2$.

Suppose that e_A and e'_A are assumed edges of G (i.e., e_A is an AA-edge and e'_A is either an AP-edge or an AA-edge). Denote by e_1, e_2, \ldots, e_q the edges of $E(G) - (A \cup \{e_A, e'_A\})$ (clearly, $q \ge t_2 - 2$). For every $i \in [0, q]$ define a set B_i by $B_0 = \emptyset$ and $B_i = B_{i-1} \cup \{e_i\}$. Let φ_i , for $i \in [0, q]$, be a mapping from E(G) to [0, 2] given by

$$\varphi_i(e) = \begin{cases} 0 & \text{when } e \in A, \\ 2 & \text{when } e \in B_i, \\ 1 & \text{otherwise.} \end{cases}$$

Clearly, $\mu_{\varphi_i}(0) = \tau(G[A])$, for every $i \in [0, q]$.

Denote by p the largest integer of [0, q] such that $\mu_{\varphi_i}(2) \leq t_2$ for each $i \leq p$. If p < q, then by Observation 2.4, $\mu_{\varphi_p}(2) + 3 \geq \mu_{\varphi_{p+1}}(2) > t_2$. Therefore, $t_2 - 2 \leq \mu_{\varphi_p}(2) \leq t_2$. If p = q, then

$$u_{\varphi_p}(2) \ge |\{e: \varphi_p(e) = 2\}| = |B_p| = p = q \ge t_2 - 2.$$

So, again $t_2 - 2 \le \mu_{\varphi_p}(2) \le t_2$. Now define a set $B \subset E(G)$ by

$$B = \begin{cases} B_p & \text{when } \mu_{\varphi_p}(2) = t_2, \\ B_p \cup \{e_A\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 1, \\ B_p \cup \{e'_A\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 2 \text{ and } e'_A \text{ is an } AP\text{-edge}, \\ B_p \cup \{e_A, e'_A\} & \text{when } \mu_{\varphi_p}(2) = t_2 - 2 \text{ and } e'_A \text{ is an } AA\text{-edge}. \end{cases}$$

It is easy to see that a mapping $\psi: E(G) \to [0,2]$ defined by

$$\psi(e) = \begin{cases} 0 & \text{when } e \in A, \\ 2 & \text{when } e \in B, \\ 1 & \text{otherwise} \end{cases}$$

satisfies $\mu_{\psi}(0) = \tau(G[A]), \ \mu_{\psi}(2) = t_2 \text{ and } \mu_{\psi}(1) = t_1.$ Thus, ψ is a desired 3-TEPC labeling of G.

Lemma 2.6. Let G be a connected graph of size at least 5(|V(G)| - 1). Then G is a 3-TEPC graph.

Proof. Since $|E(G)| \ge 5(|V(G)| - 1)$, G is a graph of order at least 10 and $\tau(G) \ge 55$. As G is a connected graph, there is a spanning tree T of G. Moreover, for G we have

$$|V(G)| = |V(G)| + |E(G)| \ge 3(2|V(G)| - 1) - 2.$$

Therefore, $\lceil \tau(G)/3 \rceil \geq 2|V(G)| - 1$. Thus, there exists a set $A \subset E(G)$ such that $E(T) \subseteq A$ and $|A| = \lceil \tau(G)/3 \rceil - |V(G)|$. Then $\tau(G[A]) = \lceil \tau(G)/3 \rceil$, every edge of E(G) - A is an AA-edge and

$$|E(G) - A| = \tau(G) - (|V(G)| + |A|) = \tau(G) - [\tau(G)/3] \ge 36 > 2$$

According to Lemma 2.5, G is a 3-TEPC graph.

τ

As

A matching in a graph is a set of pairwise nonadjacent edges. A maximum matching is a matching that contains the largest possible number of edges. The number of edges in a maximum matching of a graph G is denoted by $\alpha(G)$.

Lemma 2.7. Let G be a connected graph such that $16 \le \tau(G) \not\equiv 3 \pmod{6}$, $\delta(G) = 1$ and $\alpha(G) \ge 2$. Then G is a 3-TEPC graph.

Proof. As $16 \leq \tau(G) \not\equiv 3 \pmod{6}$, G is a graph of order at least 6 and there is an even integer $t_0 \geq 6$ such that $t_0 \in \{\lfloor \tau(G)/3 \rfloor, \lceil \tau(G)/3 \rceil\}$. Moreover, according to Lemma 2.6, it is enough to consider |E(G)| < 5(|V(G)|-1). Then, $\tau(G) < 6|V(G)|-5$ and $t_0 \leq 2|V(G)|-2$. As t_0 is even, there is a positive integer s such that $t_0 = 2s + 2$. Clearly, $2 \leq s \leq |V(G)| - 2$.

Since $\delta(G) = 1$, there is a pendant vertex in G. Suppose that w is a pendant vertex of G such that $\alpha(G - w)$ is the largest possible. If $\alpha(G - w) = 1$, then G - w is a star of order at least 5 and w is adjacent to a pendant vertex of the star. Clearly, for any pendant vertex $x \neq w$ in G, we have $\alpha(G - x) = 2 > \alpha(G - w)$, a contradiction. Thus, $\alpha(H) \geq 2$, for H := G - w. So, there are two nonadjacent edges in H. Any minimal connected subgraph of H containing these edges is a path of length at least 3. Let Pbe a path of length 3 in H such that the distance between w and P (a vertex of P) in the graph G is the smallest possible. If w is adjacent to no vertex of P, then there is a path of length at least 2 between w and P and a continuing path of length at least 2 in P. So, there is a path of length 3 in H such that w is adjacent to a vertex of this path, a contradiction. Therefore, w is adjacent to a vertex of P.

Denote by e_1 , e_2 , e_3 the edges of P in such a way that e_1 and e_3 are independent edges of P. Clearly, e_1 and e_3 are also independent edges of G. Moreover, there is a spanning tree T of H which contains P. Set p = |V(G)| - 2 and denote by e_4, \ldots, e_p the edges of $E(T) - \{e_1, e_2, e_3\}$ in such a way that the subgraph of H induced by $\{e_1, \ldots, e_j\}$ is a connected graph for each $j \in [1, p]$. The edge of G incident with wdenote by e_0 . Clearly, the subgraph of G induced by $\{e_i : i \in [0, p]\}$ is its spanning tree. Set

$$A = \begin{cases} \{e_1, e_3, e_4, \dots, e_{s+1}\} & \text{when } s < p, \\ \{e_0, e_1, e_3, e_4, \dots, e_p\} & \text{when } s = p. \end{cases}$$

The graph which we obtain from G[A] by adding the edge e_2 is a tree. Therefore, G[A] is a forest with two connected components and so |E(G[A])| = s, |V(G[A])| = s + 2, i.e., $\tau(G[A]) = t_0$. Moreover, e_0 is an AP-edge and e_2 is an AA-edge when s < p, and every edge of E(G) - A is an AA-edge when s = p. According to Lemma 2.5, G is a 3-TEPC graph.

Lemma 2.8. Let G be a connected graph such that $25 \leq \tau(G) \not\equiv 0 \pmod{6}$ and $\alpha(G) \geq 3$. Then G is a 3-TEPC graph.

Proof. As $25 \leq \tau(G) \not\equiv 0 \pmod{6}$, *G* is a graph of order at least 7 and there is an odd integer $t_0 \geq 9$ such that $t_0 \in \{\lfloor \tau(G)/3 \rfloor, \lceil \tau(G)/3 \rceil\}$. Moreover, according to Lemma 2.6, it is enough to consider |E(G)| < 5(|V(G)| - 1). Then, $\tau(G) < 6|V(G)| - 5$ and $t_0 \leq 2|V(G)| - 3$. As t_0 is odd, there is a positive integer *s* such that $t_0 = 2s + 3$. Clearly, $3 \leq s \leq |V(G)| - 3$.

Since $\alpha(G) \geq 3$, there are three pairwise nonadjacent edges in G. Any minimal connected subgraph of G containing these edges is a tree whose each pendant edge is some of these three edges. Therefore, it is either a path of length at least 5 or a tree with precisely three (pairwise nonadjacent) pendant edges. In the both cases there exists a subtree T of size 5 with $\alpha(T) = 3$.

The edges of T denote by e_i , $i \in [1, 5]$, in such a way that $\{e_1, e_3, e_5\}$ is a matching in T (also in G) and subgraphs induced by $\{e_1, e_2, e_3\}$ and $\{e_3, e_4, e_5\}$ are connected. Moreover, there is a spanning tree T' of G which contains T. Put p = |V(G)| - 1 and denote by e_6, \ldots, e_p the edges of E(T') - E(T) in such a way that the subgraph of Ginduced by $\{e_1, \ldots, e_j\}$ is a connected graph for each $j \in [1, p]$. Evidently, the subgraph of G induced by $\{e_i : i \in [1, p]\}$ is its spanning tree. Set $A = \{e_1, e_3, e_5, e_6, \ldots, e_{s+2}\}$. The graph which we obtain from G[A] by adding the edges e_2 and e_4 is a tree. Therefore, G[A] is a forest with three connected components and so |E(G[A])| = s, |V(G[A])| = s + 3, i.e., $\tau(G[A]) = t_0$. Moreover, e_2 and e_4 are AA-edges. Thus, according to Lemma 2.5, G is a 3-TEPC graph. \Box

Lemma 2.9. Let G be a connected graph containing a cycle of length k. If

$$\max\{16, 6k - 8\} \le \tau(G) \not\equiv 3 \pmod{6},\$$

then G is a 3-TEPC graph.

Proof. As $16 \leq \tau(G) \not\equiv 3 \pmod{6}$, G is a graph of order at least 6 and there is an even integer $t_0 \geq 6$ such that $t_0 \in \{\lfloor \tau(G)/3 \rfloor, \lceil \tau(G)/3 \rceil\}$. Moreover, according to Lemma 2.6, it is enough to consider |E(G)| < 5(|V(G)| - 1). Then, $\tau(G) < 6|V(G)| - 5$ and $t_0 \leq 2|V(G)| - 2$. As t_0 is even, there is a positive integer s such that $t_0 = 2s - 2$. Clearly, $\max\{4, k\} \leq s \leq |V(G)|$.

Suppose that C is an assumed cycle of length k in G. As G is connected and $s \ge k$, there is a connected subgraph of G on s vertices which contains C. Let H be such subgraph with the minimal number of edges. Clearly, H is an unicyclic graph of order (and size) s. Deleting any edge $e \in E(C)$ from H we get a tree $H - \{e\}$ of order s. Evidently, there is an edge $e_1 \in E(C)$ such that $H - \{e_1\}$ is no star. Then there is an edge e_2 in $H - \{e_1\}$ which is not a pendant edge of $H - \{e_1\}$. Now consider the set $A := E(H) - \{e_1, e_2\} \subset E(G)$. Obviously, $G[A] = H - \{e_1, e_2\}$ and so $\tau(G[A]) = 2s - 2 = t_0$. As e_1 and e_2 are AA-edges of G, by Lemma 2.5, G is a 3-TEPC graph.

Corollary 2.10. Let G be a connected graph containing a cycle of length k. If $k \ge 6$ and $\tau(G) \ge 6k - 11$, then G is a 3-TEPC graph.

Proof. Since G contains a cycle of length at least 6, $\alpha(G) \geq 3$. Moreover, $\tau(G) \geq 6k - 11 \geq 25$ and by Lemma 2.8, G is a 3-total edge product cordial graph for $\tau(G) \not\equiv 0 \pmod{6}$.

Now suppose that $\tau(G) \equiv 0 \pmod{6}$. Then $\tau(G) \ge 6k - 6 > 16$ and according to Lemma 2.9, G is a 3-TEPC graph.

Lemma 2.11. Let G be a connected graph containing a path of length 7. If $\tau(G) > 30$, then G is a 3-TEPC graph.

Proof. As G contains a path of length 7, $\alpha(G) \ge 4$. Moreover, $\tau(G) > 30$ and by Lemma 2.8, G is a 3-TEPC graph for $\tau(G) \not\equiv 0 \pmod{6}$.

Now suppose that $\tau(G) \equiv 0 \pmod{6}$. According to Lemma 2.6, it is enough to consider |E(G)| < 5(|V(G)| - 1). Then, $36 \le \tau(G) \le 6|V(G)| - 6$. As $\tau(G)/3$ is even, there is an integer s such that $\tau(G)/3 = 2s + 4$. Clearly, $4 \le s \le |V(G)| - 3 = p - 2$, where p = |V(G)| - 1.

Let P be an assumed path of length 7 in G. Denote by e_1, e_2, \ldots, e_7 the edges of P in such a way that e_i and e_{i+1} are adjacent edges for each $i \in [1, 6]$. Moreover, there is a spanning tree T of G which contains P. If p > 7, then denote by e_8, \ldots, e_p the edges of E(T) - E(P) in such a way that the subgraph of G induced by $\{e_1, \ldots, e_j\}$ is a connected graph (tree) for each $j \in [1, p]$. Set

$$A = \begin{cases} \{e_i : i \in [1, s+3] - \{2, 4, 6\} \} & \text{when } s \le p-3, \\ \{e_i : i \in [1, p] - \{2\} \} & \text{when } s = p-2. \end{cases}$$

If $s \leq p-3$, then G[A] is a forest with four connected components and so |E(G[A])| = s, |V(G[A])| = s + 4, i.e., $\tau(G[A]) = \tau(G)/3$. Moreover, e_2 and e_4 are AA-edges and so, according to Lemma 2.5, G is a 3-TEPC graph. Similarly, if s = p-2, then G[A] is a forest with two connected components and so |E(G[A])| = p-1, |V(G[A])| = p+1, i.e., $\tau(G[A]) = 2p = \tau(G)/3$. As V(G[A]) = V(G), every edge of E(G) - A is an AA-edge. Therefore, by Lemma 2.5, G is a 3-TEPC graph. \Box

3. MAIN RESULTS

Theorem 3.1. Let T be a tree of order at least 12. Then T is a 3-TEPC graph if and only if $T \neq K_{1,n}$ for $n \equiv 1 \pmod{3}$.

Proof. According to Proposition 1.1, it is enough to prove that T is a 3-TEPC graph when $\alpha(T) > 1$.

As $\delta(T) = 1$, $\alpha(T) \ge 2$ and $\tau(T) = 2|V(T)| - 1 \ge 23$, by Lemma 2.7, T is a 3-TEPC graph when $\tau(T) \not\equiv 3 \pmod{6}$.

Suppose now that $\tau(T) \equiv 3 \pmod{6}$. Thus, $14 \leq |V(T)| \equiv 2 \pmod{3}$ and $\tau(T) \geq 27$. If $\alpha(T) \geq 3$ then, according to Lemma 2.8, T is a 3-TEPC graph. If $\alpha(T) = 2$ then, by Kőnig theorem [4], there are vertices u_0 and v_0 such that every edge of T is incident with at least one of this vertices. Therefore, there are two edge-disjoint stars S_u and S_v (subgraphs of T) such that $E(T) = E(S_u) \cup E(S_v)$. Let

$$V(S_u) = \{u_i : i \in [0, r]\}, \qquad E(S_u) = \{u_0 u_j : j \in [1, r]\}, V(S_v) = \{v_i : i \in [0, s]\}, \qquad E(S_v) = \{v_0 v_j : j \in [1, s]\},$$

where $2 \leq s \leq r$ and either $v_1 = u_0$ (when $u_0v_0 \in E(T)$) or $v_1 = u_1$ (when $u_0v_0 \notin E(T)$). Clearly, $r + s \equiv 1 \pmod{3}$ in this case. Thus, there is a positive integer t such that r + s = 3t + 1. Evidently, r > t. Let q be the largest even integer satisfying

 $q \leq \min\{s,t+1\}.$ Clearly, $q \geq 2.$ Now consider the mapping φ from E(T) to [0,2] given by

$$\varphi(e) = \begin{cases} 0 & \text{when } e = u_0 u_i, \ i \in [1, t], \\ 2 & \text{when } e = v_0 v_i, \ i \in [1, q], \\ 2 & \text{when } e = u_0 u_i, \ i \in [1 + t, 1 + 2t - q], \\ 1 & \text{otherwise.} \end{cases}$$

It is easy to see that for any $w \in V(T)$ we have

$$\varphi^*(w) = \begin{cases} 0 & \text{when } w = u_i, \ i \in [0, t], \\ 2 & \text{when } w = v_i, \ i \in [2, q], \\ 2 & \text{when } w = u_i, \ i \in [1 + t, 1 + 2t - q], \\ 1 & \text{otherwise.} \end{cases}$$

Thus, $\mu_{\varphi}(i) = 2t + 1$ for each $i \in [0, 2]$, i.e., φ is a 3-TEPC labeling of T.

Theorem 3.2. Let G be an unicyclic graph of order at least 8. Then G is a 3-TEPC graph.

Proof. According to Proposition 1.2, it is enough to consider that G is not a cycle, i.e., $\delta(G) = 1$. Moreover, $\alpha(G) \ge 2$ and $\tau(G) = 2|V(G)| \ge 16$ in this case. Therefore, by Lemma 2.7, G is a 3-TEPC graph.

Theorem 3.3. Let G be a connected graph of order at least 15. Then G is a 3-TEPC graph if and only if $G \neq K_{1,n}$ for $n \equiv 1 \pmod{3}$.

Proof. According to Theorem 3.1 and Theorem 3.2, it is enough to prove that G is a 3-TEPC graph when |E(G)| > |V(G)|. By Lemma 2.6, it is sufficient to consider |V(G)| < |E(G)| < 5(|V(G)| - 1).

As |E(G)| > |V(G)|, $\tau(G) \ge 15 + 16 = 31$ and there are at least two distinct cycles in G. The length of a longest cycle in G denote by ℓ . Consider the following cases.

Case A. $\ell \geq 8$. In this case, G contains a path of length 7. Therefore, by Lemma 2.11, G is a 3-TEPC graph.

Case B. $6 \le \ell \le 7$. According to Corollary 2.10, G is a 3-TEPC graph.

Case C. $\ell = 5$. The edges of a cycle of length 5 together with an edge which is not a chord of this cycle contain a 3-matching. Thus, $\alpha(G) \geq 3$ in this case. Therefore, by Lemma 2.9 (when $\tau(G) \not\equiv 3 \pmod{6}$) or by Lemma 2.8 (when $\tau(G) \equiv 3 \pmod{6}$), G is a 3-TEPC graph.

Case D. $\ell \leq 4$. According to Lemma 2.9, G is a 3-TEPC graph whenever $\tau(G) \neq 3 \pmod{6}$. Thus, next suppose that $\tau(G) \equiv 3 \pmod{6}$. Then there is an integer t such that $\tau(G) = 6t + 3$. As |V(G)| < |E(G)| < 5(|V(G)| - 1), $30 \leq 2|V(G)| < \tau(G) < 6|V(G)| - 5$ and consequently $5 \leq t < |V(G)| - 1$.

By Lemma 2.8, G is a 3-TEPC graph when $\alpha(G) \ge 3$. So, it remains to consider that $\alpha(G) = 2$.

Let C and C' be two distinct cycles in G. If C and C' are vertex disjoint, then for any edge of a path joining C and C' there are two edges (the first from C and the second from C' such that they altogether form a 3-matching, a contradiction to $\alpha(G) = 2$. So, $V(C) \cap V(C') \neq \emptyset$. Moreover, if both cycles have length 4, then at least one end vertex of any edge of C' belongs to V(C). Therefore, the subgraph of Ginduced by $E(C) \cup E(C')$ is a connected graph of order at most 6 with at least two distinct cycles. Then there is a connected subgraph H of G such that |V(H)| = 6 and |E(H)| = 7. Let T_H be a spanning tree of H. Then there are two distinct edges a_1 and a_2 of H such that $E(H) = E(T_H) \cup \{a_1, a_2\}$. As G is connected, there is a spanning tree T of G which contains T_H . Denote by e_1, e_2, \ldots, e_p (p = |V(G)| - 1) the edges of T in such a way that $e_i \in E(T_H)$ for each $i \in [1, 5]$ and the subgraph of G induced by $\{e_1, \ldots, e_i\}$ is a connected graph (tree) for each $j \in [1, p]$. Set

$$A = \{ e_i : i \in [1, t] \}.$$

Then G[A] is a tree and so |E(G[A])| = t, |V(G[A])| = t + 1. Therefore, $\tau(G[A]) = 2t + 1 = \tau(G)/3$. Moreover, a_1 and a_2 are AA-edges and so, according to Lemma 2.5, G is a 3-TEPC graph.

We believe that the following conjecture is true.

Conjecture 3.4. Let G be a connected graph of order at least 4. Then G is a 3-TEPC graph if and only if

$$\tau(G) \neq 12$$
 and $G \neq K_{1,n}$ for $n \equiv 1 \pmod{3}$.

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.

REFERENCES

- A. Azaizeh, R. Hasni, A. Ahmad, G.-C. Lau, 3-total edge product cordial labeling of graphs, Far East Journal of Mathematical Sciences 96 (2015), 193–209.
- [2] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201–207.
- [3] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics (2016), #DS6.
- [4] D. König, Graphen und Matrizen, Mat. Fiz. Lapok 38 (1931), 116-119.
- [5] J. Ivančo, On k-total edge product cordial graphs, Australas. J. Combin. 67 (2017), 476–485.
- [6] R. Ponraj, M. Sundaram, M. Sivakumar, k-total product cordial labeling of graphs, Appl. Appl. Math.: An Inter. J. 7 (2012), 708–716.
- [7] R. Ponraj, M. Sivakumar, M. Sundaram, On 3-total product cordial graphs, Int. Math. Forum 7 (2012), no. 29–32, 1537–1546.

- [8] R. Ponraj, M. Sivakumar, M. Sundaram, New families of 3-total product cordial graphs, Inter. J. Math. Archive 3 (2012) 5, 1985–1990.
- [9] M. Sivakumar, On 4-total product cordiality of some corona graphs, Internat. J. Math. Combin. 3 (2016), 99–106.
- [10] M. Sundaram, R. Ponraj, S. Somasundaram, Total product cordial labeling of graphs, Bull. Pure Appl. Sci. Sect. E, Math. Stat. 25 (2006), 199–203.
- [11] A. Tenguria, R. Verma, 3-total super product cordial labeling for some graphs, Internat. J. Science and Research 4 (2015) 2, 557–559.
- [12] S.K. Vaidya, C.M. Barasara, Total edge product cordial labeling of graphs, Malaya Journal of Mathematik 3(1) (2013), 55–63.
- [13] S.K. Vaidya, C.M. Barasara, On total edge product cordial labeling, Internat. J. Math. Scientific Comput. 3(2) (2013), 12–16.
- [14] S.K. Vaidya, C.M. Barasara, On embedding and NP-complete problems of equitable labelings, IOSR-JM 11 (2015), 80–85.

Jaroslav Ivančo jaroslav.ivanco@upjs.sk

P.J. Šafárik UniversityInstitute of MathematicsJesenná 5, 041 54 Košice, Slovakia

Received: February 2, 2016. Revised: January 26, 2017. Accepted: January 27, 2017.