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Abstract. A k-total edge product cordial labeling is a variant of the well-known cordial
labeling. In this paper we characterize connected graphs of order at least 15 admitting
a 3-total edge product cordial labeling.

Keywords: 3-total edge product cordial labelings, 3-TEPC graphs.

Mathematics Subject Classification: 05C78.

1. INTRODUCTION

We consider finite undirected graphs without loops, multiple edges and isolated vertices.
If G is a graph, then V (G) and E(G) stand for the vertex set and edge set of G,
respectively. Cardinalities of these sets are called the order and size of G. The sum
of order and size of G is denoted by τ(G), i.e., τ(G) = |V (G)|+ |E(G)|. The subgraph
of a graph G induced by A ⊆ E(G) is denoted by G[A]. The set of vertices of G
adjacent to a vertex v ∈ V (G) is denoted by NG(v). The cardinality of this set is called
the degree of v. As usual δ(G) stands for the minimum degree among vertices of G.
For integers p, q we denote by [p, q] the set of all integers z satisfying p ≤ z ≤ q.

Let k ≥ 2 be an integer. For a graph G, a mapping ϕ : E(G)→ [0, k − 1] induces
a vertex mapping ϕ∗ : V (G)→ [0, k − 1] defined by

ϕ∗(v) ≡
∏

u∈NG(v)

ϕ(vu) (mod k).

Set
µϕ(i) := |{v ∈ V (G) : ϕ∗(v) = i}|+ |{e ∈ E(G) : ϕ(e) = i}|

for each i ∈ [0, k− 1]. A mapping ϕ : E(G)→ [0, k− 1] is called a k-total edge product
cordial (for short k-TEPC) labeling of G if

|µϕ(i)− µϕ(j)| ≤ 1 for all i, j ∈ [0, k − 1].
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A graph that admits a k-TEPC labeling is called a k-total edge product cordial
(k-TEPC) graph.

A k-total edge product cordial labeling is a version of the well-known cordial
labeling defined by Cahit [2]. Vaidya and Barasara [12] introduced the concept of
a 2-TEPC labeling as the edge analogue of a total product cordial labeling defined by
Sundaram et al. [10]. They called this labeling the total edge product cordial labeling.
In [12,13] they proved that cycles Cn for n 6= 4, complete graphs Kn for n > 2, wheels,
fans, double fans and some cycle related graphs are 2-TEPC. In [14] they proved that
any graph can be embedded as an induced subgraph of a 2-TEPC graph. An extension
of the total product cordial labeling is a k-total product cordial labeling introduced
by Ponraj et al. [6]. In [6–8] they presented some classes of 3-total product cordial
graphs. Tenguria and Verma [11] also deal with 3-total product cordial labelings. The
4-total cordial labelings are studied in [9]. Azaizeh et al. [1] introduced the concept of
k-TEPC graphs as the edge analogue of k-total product cordial graphs. They proved
that paths Pn for n ≥ 4, cycles Cn for 3 < n 6= 6, some trees and some unicyclic
graphs are 3-TEPC graphs. In [5] there is shown that dense graphs admit k-TEPC
labelings. We refer the reader to [3] for comprehensive references.

Let us recall two results from [1], which we shall use hereinafter.
Proposition 1.1. The star K1,n, n ≥ 3, is 3-total edge product cordial if and only if
n 6≡ 1 (mod 3).
Proposition 1.2. The cycle Cn, n ≥ 3, is 3-total edge product cordial if and only if
n /∈ {3, 6}.

In this paper we will deal with 3-TEPC graphs.

2. AUXILIARY RESULTS

The following claim is evident.
Observation 2.1. A mapping ϕ : E(G)→ [0, 2] is a 3-TEPC labeling of a graph G
if and only if ⌊

τ(G)
3

⌋
≤ µϕ(i) ≤

⌈
τ(G)

3

⌉
for each i ∈ [0, 2].

Lemma 2.2. Let G be a graph without isolated vertices and let t be an integer belonging
to [0, τ(G)]. There exists a mapping ϕ : E(G)→ [0, 2] satisfying µϕ(0) = t if and only
if there is a subset A of E(G) such that τ(G[A]) = t.
Proof. Suppose that there is a mapping ϕ : E(G) → [0, 2] such that µϕ(0) = t. Set
A = {e ∈ E(G) : ϕ(e) = 0}. Since ϕ∗(v) = 0 whenever v is incident with an edge of A,
µϕ(0) = τ(G[A]).

On the other hand, let A be a subset of E(G). Consider the mapping
ψ : E(G)→ [0, 2] defined by

ψ(e) =
{

0 when e ∈ A,
1 when e /∈ A.

Clearly, µψ(0) = τ(G[A]).
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Evidently, 3 ≤ τ(H) 6= 4 for any graph H without isolated vertices. Observation 2.1
and Lemma 2.2 imply the following observation.

Observation 2.3. Any 3-total edge product cordial graph G satisfies

7 ≤ τ(G) 6= 12.

Given a mapping ϕ : E(G)→ [0, 2]. Clearly, ϕ∗(v) = 2, v ∈ V (G), if and only if v
is incident with the odd number of edges having label 2 and no edge having label 0.
Therefore, we immediately have the following claim.

Observation 2.4. Let ϕ : E(G)→ [0, 2] be a mapping. Let e′ = uv be an edge of G
such that ϕ(e′) = 1. The mapping ψ : E(G)→ [0, 2] defined by

ψ(e) =
{
ϕ(e) when e 6= e′,
2 when e = e′,

satisfies µψ(0) = µϕ(0) and

µψ(2) =





µϕ(2)− 1 when ϕ∗(u) = ϕ∗(v) = 2,
µϕ(2) when {ϕ∗(u), ϕ∗(v)} = {0, 2},
µϕ(2) + 1 when ϕ∗(u) = ϕ∗(v) = 0,
µϕ(2) + 1 when {ϕ∗(u), ϕ∗(v)} = {1, 2},
µϕ(2) + 2 when {ϕ∗(u), ϕ∗(v)} = {0, 1},
µϕ(2) + 3 when ϕ∗(u) = ϕ∗(v) = 1.

Given a graph G. Let A be a subset of E(G). An edge e ∈ E(G) − A is called
AA-edge if its both end vertices belong to V (G[A]). A pendant edge e ∈ E(G) − A
is called AP -edge if its end vertex belongs to V (G[A]) (clearly, it is the end vertex
of degree greater than 1).

Lemma 2.5. Let G be a connected graph and let A be a subset of E(G) such that

τ(G[A]) ∈
{⌊

τ(G)
3

⌋
,

⌈
τ(G)

3

⌉}
.

If G contains either an AA-edge and an AP -edge or two distinct AA-edges, then it is
a 3-TEPC graph.

Proof. As τ(G[A]) ∈
{
bτ(G)/3c, dτ(G)/3e

}
, there are integers t1 and t2 such that

dτ(G)/3e ≥ t1 ≥ t2 ≥ bτ(G)/3c and τ(G[A]) + t1 + t2 = τ(G).
Let T be a spanning tree of G such that AT := E(T ) ∩A 6= ∅. Then

|E(G)−A| ≥ |E(T )−AT | = |E(T )| − |AT | = (|V (T )| − 1)− |AT |.

Since |AT |+ 1 ≤ |V (T [AT ])|,

|E(G)−A| ≥ |V (T )| − |V (T [AT ])| = |V (T )− V (T [AT ])| ≥ |V (G)− V (G[A])|.
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As
t1 + t2 = τ(G)− τ(G[A]) = |E(G)−A|+ |V (G)− V (G[A])|,

we have |E(G)−A| ≥ t1 ≥ t2.
Suppose that eA and e′A are assumed edges of G (i.e., eA is an AA-edge and

e′A is either an AP -edge or an AA-edge). Denote by e1, e2, . . . , eq the edges of
E(G) − (A ∪ {eA, e′A}) (clearly, q ≥ t2 − 2). For every i ∈ [0, q] define a set Bi by
B0 = ∅ and Bi = Bi−1 ∪ {ei}. Let ϕi, for i ∈ [0, q], be a mapping from E(G) to [0, 2]
given by

ϕi(e) =





0 when e ∈ A,
2 when e ∈ Bi,
1 otherwise.

Clearly, µϕi(0) = τ(G[A]), for every i ∈ [0, q].
Denote by p the largest integer of [0, q] such that µϕi(2) ≤ t2 for each i ≤ p. If p < q,

then by Observation 2.4, µϕp
(2) + 3 ≥ µϕp+1(2) > t2. Therefore, t2 − 2 ≤ µϕp

(2) ≤ t2.
If p = q, then

µϕp
(2) ≥ |{e : ϕp(e) = 2}| = |Bp| = p = q ≥ t2 − 2.

So, again t2 − 2 ≤ µϕp
(2) ≤ t2. Now define a set B ⊂ E(G) by

B =





Bp when µϕp
(2) = t2,

Bp ∪ {eA} when µϕp
(2) = t2 − 1,

Bp ∪ {e′A} when µϕp
(2) = t2 − 2 and e′A is an AP -edge,

Bp ∪ {eA, e′A} when µϕp
(2) = t2 − 2 and e′A is an AA-edge.

It is easy to see that a mapping ψ : E(G)→ [0, 2] defined by

ψ(e) =





0 when e ∈ A,
2 when e ∈ B,
1 otherwise

satisfies µψ(0) = τ(G[A]), µψ(2) = t2 and µψ(1) = t1. Thus, ψ is a desired 3-TEPC
labeling of G.

Lemma 2.6. Let G be a connected graph of size at least 5
(
|V (G)| − 1

)
. Then G is

a 3-TEPC graph.
Proof. Since |E(G)| ≥ 5

(
|V (G)| − 1

)
, G is a graph of order at least 10 and τ(G) ≥ 55.

As G is a connected graph, there is a spanning tree T of G. Moreover, for G we have
τ(G) = |V (G)|+ |E(G)| ≥ 3

(
2|V (G)| − 1

)
− 2.

Therefore, dτ(G)/3e ≥ 2|V (G)| − 1. Thus, there exists a set A ⊂ E(G) such that
E(T ) ⊆ A and |A| = dτ(G)/3e − |V (G)|. Then τ(G[A]) = dτ(G)/3e, every edge of
E(G)−A is an AA-edge and

|E(G)−A| = τ(G)−
(
|V (G)|+ |A|

)
= τ(G)− dτ(G)/3e ≥ 36 > 2.

According to Lemma 2.5, G is a 3-TEPC graph.
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A matching in a graph is a set of pairwise nonadjacent edges. A maximum matching
is a matching that contains the largest possible number of edges. The number of edges
in a maximum matching of a graph G is denoted by α(G).

Lemma 2.7. Let G be a connected graph such that 16 ≤ τ(G) 6≡ 3 (mod 6), δ(G) = 1
and α(G) ≥ 2. Then G is a 3-TEPC graph.

Proof. As 16 ≤ τ(G) 6≡ 3 (mod 6), G is a graph of order at least 6 and there is
an even integer t0 ≥ 6 such that t0 ∈

{
bτ(G)/3c, dτ(G)/3e

}
. Moreover, according to

Lemma 2.6, it is enough to consider |E(G)| < 5
(
|V (G)|−1

)
. Then, τ(G) < 6|V (G)|−5

and t0 ≤ 2|V (G)| − 2. As t0 is even, there is a positive integer s such that t0 = 2s+ 2.
Clearly, 2 ≤ s ≤ |V (G)| − 2.

Since δ(G) = 1, there is a pendant vertex in G. Suppose that w is a pendant vertex
of G such that α(G−w) is the largest possible. If α(G−w) = 1, then G−w is a star
of order at least 5 and w is adjacent to a pendant vertex of the star. Clearly, for any
pendant vertex x 6= w in G, we have α(G− x) = 2 > α(G−w), a contradiction. Thus,
α(H) ≥ 2, for H := G− w. So, there are two nonadjacent edges in H. Any minimal
connected subgraph of H containing these edges is a path of length at least 3. Let P
be a path of length 3 in H such that the distance between w and P (a vertex of P ) in
the graph G is the smallest possible. If w is adjacent to no vertex of P , then there is
a path of length at least 2 between w and P and a continuing path of length at least
2 in P . So, there is a path of length 3 in H such that w is adjacent to a vertex of this
path, a contradiction. Therefore, w is adjacent to a vertex of P .

Denote by e1, e2, e3 the edges of P in such a way that e1 and e3 are independent
edges of P . Clearly, e1 and e3 are also independent edges of G. Moreover, there is
a spanning tree T of H which contains P . Set p = |V (G)| − 2 and denote by e4, . . . , ep
the edges of E(T ) − {e1, e2, e3} in such a way that the subgraph of H induced by
{e1, . . . , ej} is a connected graph for each j ∈ [1, p]. The edge of G incident with w
denote by e0. Clearly, the subgraph of G induced by {ei : i ∈ [0, p]} is its spanning
tree. Set

A =
{
{e1, e3, e4, . . . , es+1} when s < p,
{e0, e1, e3, e4, . . . , ep} when s = p.

The graph which we obtain from G[A] by adding the edge e2 is a tree. Therefore, G[A]
is a forest with two connected components and so |E(G[A])| = s, |V (G[A])| = s+ 2,
i.e., τ(G[A]) = t0. Moreover, e0 is an AP -edge and e2 is an AA-edge when s < p, and
every edge of E(G) − A is an AA-edge when s = p. According to Lemma 2.5, G is
a 3-TEPC graph.

Lemma 2.8. Let G be a connected graph such that 25 ≤ τ(G) 6≡ 0 (mod 6) and
α(G) ≥ 3. Then G is a 3-TEPC graph.

Proof. As 25 ≤ τ(G) 6≡ 0 (mod 6), G is a graph of order at least 7 and there is
an odd integer t0 ≥ 9 such that t0 ∈

{
bτ(G)/3c, dτ(G)/3e

}
. Moreover, according to

Lemma 2.6, it is enough to consider |E(G)| < 5
(
|V (G)|−1

)
. Then, τ(G) < 6|V (G)|−5

and t0 ≤ 2|V (G)| − 3. As t0 is odd, there is a positive integer s such that t0 = 2s+ 3.
Clearly, 3 ≤ s ≤ |V (G)| − 3.
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Since α(G) ≥ 3, there are three pairwise nonadjacent edges in G. Any minimal
connected subgraph of G containing these edges is a tree whose each pendant edge is
some of these three edges. Therefore, it is either a path of length at least 5 or a tree
with precisely three (pairwise nonadjacent) pendant edges. In the both cases there
exists a subtree T of size 5 with α(T ) = 3.

The edges of T denote by ei, i ∈ [1, 5], in such a way that {e1, e3, e5} is a matching
in T (also in G) and subgraphs induced by {e1, e2, e3} and {e3, e4, e5} are connected.
Moreover, there is a spanning tree T ′ of G which contains T . Put p = |V (G)| − 1 and
denote by e6, . . . , ep the edges of E(T ′)−E(T ) in such a way that the subgraph of G
induced by {e1, . . . , ej} is a connected graph for each j ∈ [1, p]. Evidently, the subgraph
of G induced by {ei : i ∈ [1, p]} is its spanning tree. Set A = {e1, e3, e5, e6, . . . es+2}.
The graph which we obtain from G[A] by adding the edges e2 and e4 is a tree.
Therefore, G[A] is a forest with three connected components and so |E(G[A])| = s,
|V (G[A])| = s + 3, i.e., τ(G[A]) = t0. Moreover, e2 and e4 are AA-edges. Thus,
according to Lemma 2.5, G is a 3-TEPC graph.

Lemma 2.9. Let G be a connected graph containing a cycle of length k. If

max{16, 6k − 8} ≤ τ(G) 6≡ 3 (mod 6),

then G is a 3-TEPC graph.

Proof. As 16 ≤ τ(G) 6≡ 3 (mod 6), G is a graph of order at least 6 and there is
an even integer t0 ≥ 6 such that t0 ∈

{
bτ(G)/3c, dτ(G)/3e

}
. Moreover, according to

Lemma 2.6, it is enough to consider |E(G)| < 5
(
|V (G)|−1

)
. Then, τ(G) < 6|V (G)|−5

and t0 ≤ 2|V (G)| − 2. As t0 is even, there is a positive integer s such that t0 = 2s− 2.
Clearly, max{4, k} ≤ s ≤ |V (G)|.

Suppose that C is an assumed cycle of length k in G. As G is connected and
s ≥ k, there is a connected subgraph of G on s vertices which contains C. Let H be
such subgraph with the minimal number of edges. Clearly, H is an unicyclic graph
of order (and size) s. Deleting any edge e ∈ E(C) from H we get a tree H − {e}
of order s. Evidently, there is an edge e1 ∈ E(C) such that H − {e1} is no star.
Then there is an edge e2 in H − {e1} which is not a pendant edge of H − {e1}. Now
consider the set A := E(H)−{e1, e2} ⊂ E(G). Obviously, G[A] = H −{e1, e2} and so
τ(G[A]) = 2s−2 = t0. As e1 and e2 are AA-edges of G, by Lemma 2.5, G is a 3-TEPC
graph.

Corollary 2.10. Let G be a connected graph containing a cycle of length k. If k ≥ 6
and τ(G) ≥ 6k − 11, then G is a 3-TEPC graph.

Proof. Since G contains a cycle of length at least 6, α(G) ≥ 3. Moreover, τ(G) ≥
6k − 11 ≥ 25 and by Lemma 2.8, G is a 3-total edge product cordial graph for
τ(G) 6≡ 0 (mod 6).

Now suppose that τ(G) ≡ 0 (mod 6). Then τ(G) ≥ 6k − 6 > 16 and according to
Lemma 2.9, G is a 3-TEPC graph.

Lemma 2.11. Let G be a connected graph containing a path of length 7. If τ(G) > 30,
then G is a 3-TEPC graph.
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Proof. As G contains a path of length 7, α(G) ≥ 4. Moreover, τ(G) > 30 and by
Lemma 2.8, G is a 3-TEPC graph for τ(G) 6≡ 0 (mod 6).

Now suppose that τ(G) ≡ 0 (mod 6). According to Lemma 2.6, it is enough to
consider |E(G)| < 5

(
|V (G)| − 1

)
. Then, 36 ≤ τ(G) ≤ 6|V (G)| − 6. As τ(G)/3 is even,

there is an integer s such that τ(G)/3 = 2s+ 4. Clearly, 4 ≤ s ≤ |V (G)| − 3 = p− 2,
where p = |V (G)| − 1.

Let P be an assumed path of length 7 in G. Denote by e1, e2, . . . , e7 the edges of P
in such a way that ei and ei+1 are adjacent edges for each i ∈ [1, 6]. Moreover, there
is a spanning tree T of G which contains P . If p > 7, then denote by e8, . . . , ep the
edges of E(T )− E(P ) in such a way that the subgraph of G induced by {e1, . . . , ej}
is a connected graph (tree) for each j ∈ [1, p]. Set

A =
{{

ei : i ∈ [1, s+ 3]− {2, 4, 6}
}

when s ≤ p− 3,{
ei : i ∈ [1, p]− {2}

}
when s = p− 2.

If s ≤ p−3, then G[A] is a forest with four connected components and so |E(G[A])| = s,
|V (G[A])| = s+ 4, i.e., τ(G[A]) = τ(G)/3. Moreover, e2 and e4 are AA-edges and so,
according to Lemma 2.5, G is a 3-TEPC graph. Similarly, if s = p− 2, then G[A] is
a forest with two connected components and so |E(G[A])| = p−1, |V (G[A])| = p+1, i.e.,
τ(G[A]) = 2p = τ(G)/3. As V (G[A]) = V (G), every edge of E(G)−A is an AA-edge.
Therefore, by Lemma 2.5, G is a 3-TEPC graph.

3. MAIN RESULTS

Theorem 3.1. Let T be a tree of order at least 12. Then T is a 3-TEPC graph
if and only if T 6= K1,n for n ≡ 1 (mod 3).

Proof. According to Proposition 1.1, it is enough to prove that T is a 3-TEPC graph
when α(T ) > 1.

As δ(T ) = 1, α(T ) ≥ 2 and τ(T ) = 2|V (T )|−1 ≥ 23, by Lemma 2.7, T is a 3-TEPC
graph when τ(T ) 6≡ 3 (mod 6).

Suppose now that τ(T ) ≡ 3 (mod 6). Thus, 14 ≤ |V (T )| ≡ 2 (mod 3) and
τ(T ) ≥ 27. If α(T ) ≥ 3 then, according to Lemma 2.8, T is a 3-TEPC graph. If
α(T ) = 2 then, by Kőnig theorem [4], there are vertices u0 and v0 such that every edge
of T is incident with at least one of this vertices. Therefore, there are two edge-disjoint
stars Su and Sv (subgraphs of T ) such that E(T ) = E(Su) ∪ E(Sv). Let

V (Su) = {ui : i ∈ [0, r]}, E(Su) = {u0uj : j ∈ [1, r]},
V (Sv) = {vi : i ∈ [0, s]}, E(Sv) = {v0vj : j ∈ [1, s]},

where 2 ≤ s ≤ r and either v1 = u0 (when u0v0 ∈ E(T )) or v1 = u1 (when
u0v0 /∈ E(T )). Clearly, r+ s ≡ 1 (mod 3) in this case. Thus, there is a positive integer
t such that r+ s = 3t+ 1. Evidently, r > t. Let q be the largest even integer satisfying
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q ≤ min{s, t + 1}. Clearly, q ≥ 2. Now consider the mapping ϕ from E(T ) to [0, 2]
given by

ϕ(e) =





0 when e = u0ui, i ∈ [1, t],
2 when e = v0vi, i ∈ [1, q],
2 when e = u0ui, i ∈ [1 + t, 1 + 2t− q],
1 otherwise.

It is easy to see that for any w ∈ V (T ) we have

ϕ∗(w) =





0 when w = ui, i ∈ [0, t],
2 when w = vi, i ∈ [2, q],
2 when w = ui, i ∈ [1 + t, 1 + 2t− q],
1 otherwise.

Thus, µϕ(i) = 2t+ 1 for each i ∈ [0, 2], i.e., ϕ is a 3-TEPC labeling of T .

Theorem 3.2. Let G be an unicyclic graph of order at least 8. Then G is a 3-TEPC
graph.
Proof. According to Proposition 1.2, it is enough to consider that G is not a cycle,
i.e., δ(G) = 1. Moreover, α(G) ≥ 2 and τ(G) = 2|V (G)| ≥ 16 in this case. Therefore,
by Lemma 2.7, G is a 3-TEPC graph.

Theorem 3.3. Let G be a connected graph of order at least 15. Then G is a 3-TEPC
graph if and only if G 6= K1,n for n ≡ 1 (mod 3).
Proof. According to Theorem 3.1 and Theorem 3.2, it is enough to prove that G is
a 3-TEPC graph when |E(G)| > |V (G)|. By Lemma 2.6, it is sufficient to consider
|V (G)| < |E(G)| < 5

(
|V (G)| − 1

)
.

As |E(G)| > |V (G)|, τ(G) ≥ 15 + 16 = 31 and there are at least two distinct cycles
in G. The length of a longest cycle in G denote by `. Consider the following cases.
Case A. ` ≥ 8. In this case, G contains a path of length 7. Therefore, by Lemma 2.11,
G is a 3-TEPC graph.
Case B. 6 ≤ ` ≤ 7. According to Corollary 2.10, G is a 3-TEPC graph.
Case C. ` = 5. The edges of a cycle of length 5 together with an edge which is not
a chord of this cycle contain a 3-matching. Thus, α(G) ≥ 3 in this case. Therefore,
by Lemma 2.9 (when τ(G) 6≡ 3 (mod 6)) or by Lemma 2.8 (when τ(G) ≡ 3 (mod 6)),
G is a 3-TEPC graph.
Case D. ` ≤ 4. According to Lemma 2.9, G is a 3-TEPC graph whenever τ(G) 6≡ 3
(mod 6). Thus, next suppose that τ(G) ≡ 3 (mod 6). Then there is an integer t such
that τ(G) = 6t + 3. As |V (G)| < |E(G)| < 5

(
|V (G)| − 1

)
, 30 ≤ 2|V (G)| < τ(G) <

6|V (G)| − 5 and consequently 5 ≤ t < |V (G)| − 1.
By Lemma 2.8, G is a 3-TEPC graph when α(G) ≥ 3. So, it remains to consider

that α(G) = 2.
Let C and C ′ be two distinct cycles in G. If C and C ′ are vertex disjoint, then

for any edge of a path joining C and C ′ there are two edges (the first from C and
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the second from C ′) such that they altogether form a 3-matching, a contradiction
to α(G) = 2. So, V (C) ∩ V (C ′) 6= ∅. Moreover, if both cycles have length 4, then at
least one end vertex of any edge of C ′ belongs to V (C). Therefore, the subgraph of G
induced by E(C) ∪ E(C ′) is a connected graph of order at most 6 with at least two
distinct cycles. Then there is a connected subgraph H of G such that |V (H)| = 6 and
|E(H)| = 7. Let TH be a spanning tree of H. Then there are two distinct edges a1 and
a2 of H such that E(H) = E(TH) ∪ {a1, a2}. As G is connected, there is a spanning
tree T of G which contains TH . Denote by e1, e2, . . . , ep (p = |V (G)| − 1) the edges
of T in such a way that ei ∈ E(TH) for each i ∈ [1, 5] and the subgraph of G induced
by {e1, . . . , ej} is a connected graph (tree) for each j ∈ [1, p]. Set

A =
{
ei : i ∈ [1, t]

}
.

Then G[A] is a tree and so |E(G[A])| = t, |V (G[A])| = t + 1. Therefore, τ(G[A]) =
2t+ 1 = τ(G)/3. Moreover, a1 and a2 are AA-edges and so, according to Lemma 2.5,
G is a 3-TEPC graph.

We believe that the following conjecture is true.

Conjecture 3.4. Let G be a connected graph of order at least 4. Then G is a 3-TEPC
graph if and only if

τ(G) 6= 12 and G 6= K1,n for n ≡ 1 (mod 3).
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