Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, Cu–4Cr–xZrC nanocomposites have been developed through powder metallurgy route by varying the proportions of zirconium carbide viz. (0–10 wt.%). The required green compacts were prepared using die set assembly in a compression testing machine. Consequently, the hot extruded samples were tested for dry sliding wear and friction using a pin-on-disc machine. SEM, XRD, pin on-disc system and Vickers hardness tester were used to evaluate the characterization, tribological properties and hardness respectively of Cu–4Cr–xZrC nanocomposites. From the observations, it was found that the friction coefficient increased progressively with increasing load and sliding distance. Furthermore, the specific wear rate (SWR) decreased for the Cu–4Cr–xZrC nanocomposites when compared to composites that of pure copper. Hardness increases with the addition of nano ZrC content into the matrix composites.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
537--552
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
- Centre for Nano Science and Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Virudhunagar 626 005, Tamilnadu, India
autor
- Centre for Nano Science and Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Virudhunagar 626 005, Tamilnadu, India
Bibliografia
- [1] L. Zhang, X.B. He, X.H. Qu, B.H. Duan, X. Lu, M.L. Qin, Dry sliding wear properties of high volume fraction SiC p/Cu composites produced by pressureless infiltration, Wear 265 (2008) 1848–1856.
- [2] H. Kaftelen, M. Lütfi Övecglu, H. Henein, H. Cimenoglu, ZrC particle reinforced Al–4 wt.% Cu alloy composites fabricated by mechanical alloying and vacuum hot pressing: microstructural evaluation and mechanical properties, Materials Science and Engineering A 527 (2010) 5930–5938.
- [3] M. Lopez, J.A. Jimenez, D. Corredor, Precipitation strengthened high strength-conductivity copper alloys containing ZrC ceramics, Composites Part A Applied Science and Manufacturing 38 (2007) 272–279.
- [4] G. Kwabena Gyimah, P. Huang, D. Chen, Dry sliding wear studies of copper-based powder metallurgy brake materials, Journal of Tribology 136 (2014) 041601–41606.
- [5] G. Purcek, H. Yanar, O. Saray, I. Karaman, H.J. Maier, Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy, Wear 311 (2014) 149–158.
- [6] S.C. Vettivel, N. Selvakumar, N. Leema, A. Haiter Lenin, Electrical resistivity, wear map and modeling of extruded tungsten reinforced copper composite, Materials and Design 56 (2014) 791–806.
- [7] R.K. Gautam, S. Ray, S.C. Jain, S.C. Sharma, Tribological behavior of Cu–Cr–SiCp in situ composite, Wear 265 (2008) 902–912.
- [8] W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, M.S. Liu, Microstructure and tribological behavior of a peak aged Cu–Cr-Zr alloy, Materials Science and Engineering A 343 (2003) 89–96.
- [9] S. Mula, P. Sahani, S.K. Pratihar, S. Mal, C.C. Koch, Mechanical properties and electrical conductivity of Cu–Cr and Cu–Cr–4% SiC nanocomposites for thermo-electric applications, Materials Science and Engineering A 528 (2011) 4348–4356.
- [10] Z. Li, W. Wang, J. Wang, Effects of TiB2 on microstructure of nano-grained Cu–Cr–TiB2 composite powders prepared by mechanical alloying, Advanced Powder Technology 25 (2014) 415–422.
- [11] S. Sheibani, S. Heshmati-Manesh, A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta Materialia 58 (2010) 6828–6834.
- [12] MPIF standard 35, Materials Standards for P/M Structural Parts, Metal Powder Industries Federation, 2012.
- [13] N. Selvakumar, S.C. Vettivel, Thermal electrical and wear behavior of sintered Cu–W nanocomposites, Materials and Design 46 (2013) 16–25.
- [14] N. Selvakumar, T. Ramkumar, Effects of high temperature wear behaviour of sintered Ti–6Al–4V reinforced with nano B4C particle, Transactions of the Indian Institute of Metals (2015), http://dx.doi.org/10.1007/s12666-015-0681-y.
- [15] C.S. Ramesh, M. Safiulla, Wear behavior of hot extruded Al6061 based composites, Wear 263 (2007) 629–635.
- [16] A.G. Baker, Study of mechanical and physical properties for SiC/Al composites, International Journal of Advances in Applied Sciences 2 (2) (2013) 67–72.
- [17] S.C. Vettivel, N. Selvakumar, R. Narayanasamy, N. Leema, Numerical modeling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology, Materials and Design 50 (2013) 977–996.
- [18] N.B. Dhokey, R.K. Paretkar, Study of wear mechanisms in copper-based SiCp (20% by volume) reinforced composite, Wear 265 (2008) 117–133.
- [19] R.K. Gautam, S. Ray, S.C. Sharma, S.C. Jain, R. Tyagi, Dry sliding wear behavior of hot forged and annealed Cu–Cr– graphite in-situ composites, Wear 271 (2011) 658–664.
- [20] Y. Zhan, G. Zhang, The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites, Materials Letters 57 (2003) 4583–4591.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ca3e4d9-5d4f-461d-b2c8-84ed51ef3b6a