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Abstract: The study addresses the topic of different fractional orders in the context of simulation as well as experiments using real  
electrical elements of fractional-order circuit. In studying the two solutions of the resistance-capacitance (RC) ladder circuit of appropriate 
parameters, different fractional orders of the electrical circuit are considered. Two fractional-order (non-integer) elements were designed 
based on the  Continued Fraction Expansion (CFE) approximation method. The CFE method itself was modified to allow free choice  
of centre pulsation. It was also proposed that when making individual ladder circuits, in the absence of elements with the parameters  
specified by the program, they should be obtained by connecting commercially available elements in series or parallel. Finally,  
the theoretical analysis of such a circuit is presented using state-space method and verified experimentally. 
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1. INTRODUCTION 

Fractional calculus is a generalisation of classical calculus 
where the order can be a real or complex number. For integer 
orders, classical derivative is obtained. Fractional calculus has 
been gaining significant interest in the field of dynamical systems 
due to its potential for the development of mathematical models 
that reflect various phenomena, in the field of science and engi-
neering [6], with higher fidelity than the models based on classical 
differential calculus. Moreover, its vital feature is the capability to 
describe the memory effect in the system [8]. For instance, the 
improved models of the RC, RL and RLC electrical circuits as well 
as supercapacitors and batteries have been successfully devel-
oped using fractional calculus [6, 9, 21]. 

The RC ladder network is a form of realisation of elements 
described as a fractional derivative, which can be used for model-
ling, e.g. supercapacitors or transmission lines [8, 14]. The ladder 
circuit is characterised by an electrical circuit configured based on 
series and parallel connections. Unlike supercapacitors, ladder 
elements have a fixed pseudocapacitance and the order of deriva-
tive has no nonlinear effects. The theory predicts that a ladder 
system can behave in a way that is analogous to the behaviour of 
fractional-order elements only if it has infinitely many components. 
In practice, this number is finite, which is associated with a limited 
use of this system as an element of the fractional order. The main 
problem in using a ladder circuit is the equivalent resistance, 
which can be derived by successively applying the series and 
parallel reduction formulae using the appropriate approximation. 
For this reason, the choice of resistance and capacitance is im-
portant. In addition, the designed ladder network should behave 
with the greatest possible accuracy and in a wide frequency range 
as an element of a fractional derivative [14, 23, 24, 26]. 

An example is the paper by Petras et al. [16] that proposes a 
relatively simple way of selecting resistance and capacitance, 
requiring, however, the use of a large number of passive compo-
nents. In order to achieve phase compatibility (over three dec-
ades), the authors built a ladder network consisting of up to 130 
meshes. The method they propose is limited to an order of 0.5. 

There are other, more sophisticated, methods of selecting pa-
rameters of components such as resistance and capacitance 
ladder circuit in order to obtain the desired frequency range in 
which the ladder acts with good accuracy as a fractional with a 
much smaller mesh. These methods are based on the approxima-
tion of the function (s to the power of α) by the ratios of polynomi-
als of the same degree, which also allows the selection of the 
required order of the derivative [5, 19, 20, 23]. 

Although fractional calculus was first used in 1695 by Leibniz 
and L’Hospital, the theory and applications of fractional calculus 
developed greatly in the 19th and 20th centuries, and many au-
thors gave different definitions of fraction derivatives and integrals. 
Subsequently, many general calculus solutions have been devel-
oped, for example, the Rieimann-Liouville fractional derivative 
definition, the Grünwald-Letnikov derivative definition and the 
Caputo fractional derivative definition [2, 3, 4, 7, 15, 22, 25, 26]. 

The present study is one of the first to address the topic of dif-
ferent fractional orders in the context of simulation as well as 
experiments using real elements of fractional-order RC circuit. An 
attempt was made to implement RC ladder networks based on 
Continued Fraction Expansion (CFE) development using Caputo’s 
fractional derivative definition. For the purpose of the project, an 
algorithm was developed to select the parameters of passive 
elements included in the ladder circuits acting as physical ele-
ments of incomplete orders. Two ladder circuits of fractional or-
ders of 0.5 and 0.7 were made. Subsequently, an electrical circuit 
was assembled that included both incomplete-order elements and 
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resistors and then tested in the time and frequency domain. Theo-
retical predictions were compared with the experimental data.  

2. MATHEMATICAL PRELIMINARIES 

Definition 1. The Caputo derivative of the fractional order 
α ∊ (0, 1) of differentiable function f(t) is defined by Eq. (1): 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1−𝛼)
∫ (𝑡 − 𝜏)−𝛼𝑓̇(𝜏)𝑑𝜏
𝑡

0
  (1) 

where Γ(x) is the Euler gamma function. 
The one-sided Laplace transform of the fractional operator 

(Eq. [1]) is given by the following expression (Eq. [2]): 

𝐿[𝐷𝑡
𝛼𝑓(𝑡)] = 𝑠𝛼𝐹(𝑠) − 𝑠𝛼−1𝑓(0) (2) 

where 𝐹(𝑠) = 𝐿[𝑓(𝑡)]. 

Let us consider a fractional electrical element in which the current 
i(t) and voltage u(t) relation is described by Eq. (3): 

𝑖(𝑡) = 𝐶𝛼𝐷𝑡
𝛼𝑢(𝑡) (3) 

where Cα is called a pseudocapacitance and 0 < 𝛼 ≤ 1 is the 
order of the element. 

The impedance in s-domain of this element is represented by 
Eq. (4): 

𝑍(𝑠) =
𝑈(𝑠)

𝐼(𝑠)
=

1

𝐶𝛼𝑠
𝛼 (4) 

and the spectral impedance is given by Eq. (5): 

𝑍(𝑗𝜔) =
1

𝐶𝛼𝑗
𝛼𝜔𝛼

=
1

𝐶𝛼[cos(
𝜋𝛼

2
)+𝑗 sin(

𝜋𝛼

2
)]𝜔𝛼

 (5) 

Computing the magnitude of the spectral impedance (Eq. [5]) 
yields the following expression (Eq. [6]): 

𝐴(𝜔) = |𝑍(𝑗𝜔)| =
1

𝐶𝛼𝜔
𝛼 (6) 

and in the logarithmic scale, we obtain the following (Eq. [7]): 

𝑀(𝜔) = 20 log 𝐴(𝜔) = −20𝛼 log𝜔 − 20 log 𝐶𝛼 (7) 

while the phase shift has the following form (Eq. [8]): 

𝜑(𝜔) = arg𝑍(𝑗𝜔) = −
𝜋

2
𝛼 (8) 

3. FRACTIONAL-ORDER ELECTRIC ELEMENT 

There are many different methods reported in the literature for 
designing electrical components of a fractional order [1, 10, 11, 
17, 18, 23]. They require the selection of a certain type of 
electrical circuit consisting of passive elements and determining 
the method of selecting their parameters. A commonly used 
approach is to choose a circuit in the form of a ladder network 
consisting of n capacitors and n+1 resistors, as depicted in Fig. 1. 

 
Fig. 1. Internal structure of the fractional-order element 

The method of selecting parameters of an RC ladder model 
implementing the element described by a fractional derivative of 
the parameter α is based on the development of the CFE [12, 13, 
19, 23], as expressed by Eq. (9). 

(1 + 𝑥)−𝛼 = 1 −
𝛼𝑥

1+
(1+𝛼)𝑥

2+
(1−𝛼)𝑥

3+
(2+𝛼)𝑥

2+
(2−𝛼)𝑥

5+
(3+𝛼)𝑥

2+
(3−𝛼)𝑥

7+
(4+𝛼)𝑥

2+
(4−𝛼)𝑥

⋱

                               (9) 

Due to the finite number of elements of the ladder network, 
amounting to 2𝑛 + 1, the expansion of Eq. (9) should be finished 
at a certain step, allowing approximation of the n-th order of 
(1 + 𝑥)−𝛼, as presented in Eq. (10). 

𝐴𝑛
𝛼(𝑥) = 1 −

𝛼𝑥

1+
(1+𝛼)𝑥

2−                                                         

   ⋱

                    2+
(𝑛−1+𝛼)𝑥

2𝑛−1+
(𝑛+𝛼)𝑥

2

                                  (10) 

Substituting 𝑥 =
𝑠

𝜔0
− 1 within Eq. (10), where ω0 is the 

centre frequency, yields the following function (Eq. [11]): 

𝑎𝑛
𝛼(𝑠) = 𝐴𝑛

𝛼 (
𝑠

𝜔0
− 1) (11) 

while the approximating expression is: 

(1 + 𝑥)−𝛼 = 𝜔0
𝛼𝑠−𝛼 (12) 

This is a modification of the commonly used method that 
assumes ω0 = 1 rad/s. The approximation of Eq. (11) is accurate 

when s = ω0 is substituted, as indicated in Eq. (13): 

𝑎𝑛
𝛼(𝜔0) = 𝐴𝑛

𝛼 (
𝜔0

𝜔0
− 1) = 𝐴𝑛

𝛼(0) = 1 (13) 

The simplification of the continued fraction (Eq. [11]) provides 
the rational function of the variable s (Eq. [14]): 

𝑎𝑛
𝛼(𝑠) =

𝑙𝑛𝑠
𝑛+𝑙𝑛−1𝑠

𝑛−1+⋯𝑙1𝑠+𝑙0

𝑚𝑛𝑠
𝑛+𝑚𝑛−1𝑠

𝑛−1+⋯𝑚1𝑠+𝑚0
 (14) 

Implementation of the fractional element with an impedance 
operator as in Eq. (3) is possible based on the approximation (Eq. 
[14]) that yields the following expression (Eq. [15]): 

𝑍(𝑠) =
𝜔0
𝛼𝑠−𝛼

𝐶𝛼𝜔0
𝛼 ≈ 𝐾

𝑙𝑛𝑠
𝑛+𝑙𝑛−1𝑠

𝑛−1+⋯𝑙1𝑠+𝑙0

𝑚𝑛𝑠
𝑛+𝑚𝑛−1𝑠

𝑛−1+⋯𝑚1𝑠+𝑚0
 (15) 

Constant K is as defined in Eq. (16): 

𝐾 =
1

𝐶𝛼𝜔0
𝛼 (16) 

It is a scaling constant expressed in Ohms, allowing the 
selection of resistance and capacitance in such a way that the 
currents flowing into the electrical circuit have an appropriate 
order of magnitude. 

The diagram of the RC ladder network depicted in Fig. 1 has 
an impedance operator that can be expressed in terms of the 
following (Eq. [17]): 

𝑍𝑛(𝑠) = 𝑅0 +
1

𝐶1𝑠+
1

𝑅1+
1

𝐶2𝑠+
1

𝑅2+⋯
1

𝐶𝑛𝑠+
1
𝑅𝑛

 (17) 
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The results that we obtain by developing a rational function 

Zn(s) in a continued fraction with individual resistances Rk and 
capacitances Ck would be as in Eq. (17). 

The above procedure makes it possible to design a ladder 

network of fractional order α based on the scaling constant 𝐾, the 
center pulsation ω0 and the number of capacitors 𝑛. The 
algorithm consists of the following steps: 
1. Input of a set of ladder network parameters: 

a. order of derivative α, 

b. number of capacitors 𝑛, 

c. scaling constant 𝐾, 
d. centre pulsation ω0. 

2. Calculation of coefficients 𝑙𝑘 and 𝑚𝑘 of polynomials being the 
numerator and denominator of the right side of Eq. (15). 

3. Determination of the coefficients 𝑅𝑘 and 𝐶𝑘 of the expansion 
provided in Eq. (17), based on knowledge of 𝑙𝑘 and 𝑚𝑘 and 
the constant 𝐾. 

4. USING THE TEMPLATE RC LADDER MODEL  
BASED ON CFE DEVELOPMENT 

The CFE method was used to design an RC ladder circuit 
according to the diagram in Fig. 1. Adoption of the assumed input 
parameters was as the following: order of the derivative α1 = 0.5, 
constant K1 = 2087.67 Ω, centre frequency f0 = 100 Hz and the 
number of meshes of the ladder network n = 30; this allowed the 
procurement of parameters of the RC ladder network elements 
predicted by the program: resistance values of the resistors and 
capacitances values of the capacitors. 

Due to the limited availability of the elements with the desired 
parameters on the market and discrepancies between the values 
declared by the manufacturer and the measured ones, the 
resulting resistances and capacitances provided by the program 
had to be obtained by building equivalent systems. In most cases, 
it was sufficient to select pairs of elements, which were then 
connected in series or parallel. To this end, the program was 
developed for selecting equivalent resistances and capacitances 
as well as an appropriate way of combining them – so as to obtain 
the value as close as possible to that anticipated by the program. 
This procedure allowed parameters to be selected with an error of 
less than 1%. Tabs. 1 and 2 summarise the parameters for the 
ladder network of α1 = 0.5. The second and third columns contain 
the measured values of resistive elements (Tab. 1) and 
capacitances (Tab. 2) used to build the ladder network. The fourth 
column shows connection of the elements. The fifth column 
contains the parameters of the equivalent systems, while the sixth 
column contains the parameters determined by the algorithm. The 
software used for the calculations (and plotting) was Wolfram 
Mathematica 9.0. 

MLCC ceramic capacitors were used to build the ladder circuit 
model. Resistance and capacitance measurements were made 
with the LCR meter by HM8118 Rohde & Schwarz at 120 Hz. 

Similar to the present method, a row RC ladder network of an 
order α2 = 0.7 was designed. For the purpose of the algorithm, the 
following assumptions were made: scaling constant K2 = 1010 Ω, 
centre frequency f0 = 100 Hz and number of capacitors n = 30. 

Tab. 1. Equivalent capacitances and their connection 

No. Ca Cb Connection Cab C 

1 34.08 nF 3.42 nF Parallel 37.5 nF 37.5 nF 

2 10.2 μF 88.4 nF Series 87.6 nF 87.6 nF 

3 137 nF 1.43 nF Parallel 138 nF 138 nF 

4 99.4 nF 89.4 nF Parallel 189 nF 189 nF 

5 945 nF 322 nF Series 240 nF 240 nF 

6 225 nF 67.3 nF Parallel 293 nF 293 nF 

7 346 nF - None 346 nF 346 nF 

8 337 nF 63.3 nF Parallel 401 nF 401 nF 

9 1.51 μF 654 nF Series 457 nF 457 nF 

10 474 nF 40.6 nF Parallel 514 nF 514 nF 

11 348 nF 226 nF Parallel 574 nF 574 nF 

12 637 nF - None 637 nF 636 nF 

13 661 nF 40.1 nF Parallel 702 nF 702 nF 

14 1.54 μF 1.54  μF Series 770 nF 770 nF 

15 633 nF 210 nF Parallel 843 nF 842 μF 

16 10.1 μF 1.01  μF Series 920 nF 919 nF 

17 983 nF 19.3 nF Parallel 1.00 μF 1.00 μF 

18 675 nF 416 nF Parallel 1.09 μF 1.09 μF 

19 975 nF 212 nF Parallel 1.19 μF 1.19 μF 

20 663 nF 632 nF Parallel 1.30 μF 1.30 μF 

21 954 nF 458 nF Parallel 1.41 μF 1.42 μF 

22 1.50 μF 46.7 nF Parallel 1.55 μF 1.55 μF 

23 1.02 μF 685 nF Parallel 1.71 μF 1.71 μF 

24 1.55 μF 348 nF Parallel 1.89 μF 1.89 μF 

25 1.49 μF 629 nF Parallel 2.12 μF 2.12 μF 

26 1.49 μF 909 nF Parallel 2.40 μF 2.40 μF 

27 719 nF 1.03 μF Parallel 2.78 μF 2.78 μF 

28 10.6 μF 4.88 μF Parallel 3.34 μF 3.34 μF 

29 434 nF 2.28 μF Parallel 4.29 μF 4.28 μF 

30 5.15 μF 1.45 μF Parallel 6.60 μF 6.59 μF 

Tab. 2. Equivalent resistances and their connection 

No. Ra Rb Connection Rab R 

0 739 Ω 35.9 Ω Parallel 34.2 Ω 34.2 Ω 

1 802 Ω 218 Ω Parallel 171 Ω 171 Ω 

2 5.07 kΩ 329 Ω Parallel 309 Ω 309 Ω 

3 2.35 kΩ 553 Ω Parallel 447 Ω 447 Ω 

4 555 Ω 32.8 Ω Series 587 Ω 588 Ω 

5 662 Ω 67.2 Ω Series 730 Ω 729 Ω 

6 612 Ω 262 Ω Series 874 Ω 874 Ω 

7 2.14 kΩ 1.96 kΩ Parallel 1.02 kΩ 1.02 kΩ 

8 272 kΩ 1.18 kΩ Parallel 1.17 kΩ 1.17 kΩ 

9 12.9 kΩ 1.48 kΩ Parallel 1.33 kΩ 1.33 kΩ 

10 9.80 kΩ 1.76 kΩ Parallel 1.49 kΩ 1.49 kΩ 

11 5.54 kΩ 2.36 kΩ Parallel 1.66 kΩ 1.66 kΩ 

12 4.19 kΩ 3.26 kΩ Parallel 1.83 kΩ 1.83 kΩ 

13 1.96 kΩ 55.0 Ω Series 2.01 kΩ 2.01 kΩ 

14 13.0 kΩ 2.66 kΩ Parallel 2.21 kΩ 2.21 kΩ 

15 2.36 kΩ 50.4 Ω Series 2.41 kΩ 2.41 kΩ 

16 8.05 kΩ 3.90 kΩ Parallel 2.63 kΩ 2.63 kΩ 

17 1.77 kΩ 1.10 kΩ Series 2.86 kΩ 2.86 kΩ 

18 2.92 kΩ 195 Ω Series 3.12 kΩ 3.12 kΩ 

19 17.7 kΩ 4.21 kΩ Parallel 3.40 kΩ 3.40 kΩ 

20 30.1 kΩ 4.23 kΩ Parallel 3.71 kΩ 3.71 kΩ 

21 3.84 kΩ 215 Ω Series 4.06 kΩ 4.05 kΩ 

22 38.5 kΩ 5.04 kΩ Parallel 4.45 kΩ 4.45 kΩ 

23 2.95 kΩ 1.97 kΩ Series 4.92 kΩ 4.92 kΩ 

24 240 kΩ 5.60 kΩ Parallel 5.47 kΩ 5.47 kΩ 

25 26.4 kΩ 8.03 kΩ Parallel 6.16 kΩ 6.16 kΩ 

26 6.82 kΩ 235 Ω Series 7.05 kΩ 7.05 kΩ 

27 55.4 kΩ 9.76 kΩ Parallel 8.29 kΩ 8.29 kΩ 

28 8.95 kΩ 1.29 kΩ Series 10.2 kΩ 10.2 kΩ 

29 29.89 kΩ 26.4 kΩ Parallel 14.0 kΩ 14.0 kΩ 

30 738 kΩ 29.9 kΩ Parallel 28.7 kΩ 28.7 kΩ 
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5. FREQUENCY RESPONSE OF THE LADDER CIRCUIT 
MODEL 

Due to the complexity of the ladder networks and the number 
of their elements, Bode plots of incomplete systems, spanning 
four decades (1–10 kHz), were investigated. Figs. 2 and 3 present 
the amplitude and phase characteristics for an RC ladder model of 
an order α1 = 0.5 and pseudocapacitance Cα1

 = 19.1 µF/s0.5. 

 
Fig. 2. Bode magnitude plot for the RC ladder circuit of an order α1 = 0.5 

 
Fig. 3. Bode phase plot for the RC ladder circuit of an order α1 = 0.5 

In turn, Figs. 4 and 5 depict the frequency responses of the 
ladder network of an incomplete order α2 = 0.7 and 
pseuodcapacitance Cα2

 = 10.9 µF/s0.5. 

 
Fig. 4. Bode magnitude plot for the RC ladder circuit of an order  
            of α2 = 0.7 

 
Fig. 5. Bode phase plot for the RC ladder circuit of an order of α2 = 0.7 

The obtained phase characteristics for the RC ladder with an 
order of 0.5 deviate from the theoretical value (–45°) by no more 
than 1.5°. In contrast, the measured magnitude deviates from the 
theoretical line by less than 0.7%. The measured phase 
characteristic for the RC ladder of a fractional order of α2 = 0.7 
deviates from the theoretical value (−63°) by no more than 2.2°. 
The Bode magnitude plot for the system of α2, based on the 
measurement, is consistent with the theoretical response, differing 
less than 0.8%. 

6. ELECTRICAL FRACTIONAL CIRCUIT 

The diagram of the measuring system, shown in Fig. 6, 
consists of three external resistors R1, R2 and R3, constant voltage 
source e and two elements of orders α1 and α2. 

 
Fig. 6. Diagram of the RC electrical circuit 

The dynamics of the voltages at the terminals of both ladder 
circuits are given by the state-space representation (Eq. [18]): 

[
𝐷𝑡
𝛼1𝑢1(𝑡)

𝐷𝑡
𝛼2𝑢2(𝑡)

] = [
𝑎11 𝑎12
𝑎21 𝑎22

] [
𝑢1(𝑡)

𝑢2(𝑡)
] + [

𝑏1
𝑏2
] 𝑒(𝑡)  (18) 

where: 

𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

] = [
−
𝑅2+𝑅3

𝑅2𝐶𝛼1

𝑅3

𝑅2𝐶𝛼1
𝑅3

𝑅2𝐶𝛼2
−
𝑅1+𝑅3

𝑅2𝐶𝛼2

] (19a) 

𝐵 = [
𝑏1
𝑏2
] = [

𝑅2

𝑅2𝐶𝛼1
𝑅1

𝑅2𝐶𝛼2

] (19b) 
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𝑅2 = 𝑅1𝑅2 + 𝑅2𝑅3 + 𝑅1𝑅3 (19c) 

The solution of the equation of state (Eq. [20]) is as follows: 

𝑥(𝑡) = 𝛷0(𝑡)𝑥0 + ∫ [𝛷1(𝑡 − 𝜏)𝐵̃1 +𝛷2(𝑡 − 𝜏)𝐵̃2]𝑒(𝜏)𝑑𝜏
𝑡

0
  

                                                                                                   (20) 

where 𝑥(𝑡) = [
𝑢1(𝑡)
𝑢2(𝑡)

] is a state vector with x0 = x(0), while 

𝐵̃1 = [
𝑏1
0
] , 𝐵̃2 = [

0
𝑏2
] (21) 

Time-dependent functions Φk(t) for k = 0,1,2, occurring in the 
solution of Eq. (19), are given by functional series, as presented in 
Eq. (22): 

𝛷0(𝑡) = ∑ ∑ 𝑇𝑘1𝑘2
𝑡𝑘1𝛼1+𝑘2𝛼2

𝛤(𝑘1𝛼1+𝑘2𝛼2+1)
∞
𝑘2=0

∞
𝑘1=0

𝛷1(𝑡) = ∑ ∑ 𝑇𝑘1𝑘2
𝑡(𝑘1+1)𝛼1+𝑘2𝛼2−1

𝛤[(𝑘1+1)𝛼1+𝑘2𝛼2]
∞
𝑘2=0

∞
𝑘1=0

𝛷2(𝑡) = ∑ ∑ 𝑇𝑘1𝑘2
𝑡𝑘1𝛼1+(𝑘2+1)𝛼2−1

𝛤[𝑘1𝛼1+(𝑘2+1)𝛼2]
∞
𝑘2=0

∞
𝑘1=0

 (22) 

where data in the form of matrices Tk1k2
 are provided in terms of 

the following recursive relationship (Eq. [23]): 

𝑓(𝑥) =

{
  
 

  
 

𝐼𝑁   

𝐴̃1𝑇𝑘1−1,𝑘2 + 𝐴̃2𝑇𝑘1,𝑘2−1   

0  

for 𝑘1 = 𝑘2 = 0

for 𝑘1, 𝑘2 ≥ 0
and 𝑘1 = 𝑘2 = 0

for 𝑘1 < 0
and/or 𝑘2 < 0

  (23) 

where 

𝐴̃1 = [
𝑎11 𝑎12
0 0

] , 𝐴̃2 = [
0 0
𝑎21 𝑎22

] (24) 

7. MEASUREMENTS OF THE ELECTRICAL CIRCUIT 

The RC ladder network of fractional orders α1 = 0.5 and 

α2 = 0.7 was assembled (Fig. 7) according to the scheme 
presented in Fig. 6. The values of the parameters of the circuit 
elements are presented in Tab. 3. 

Tab. 3. Parameters of the circuit 

Circuit parameters Values 

R1 996.8 Ω 

R2 1183.0 Ω 

R3 893.8 Ω 

α1 0.5 

α2 0.7 

Cα1 19.1 μF/s0.5 

Cα2 10.9 μF/s0.3 

e 10 V 

 
Fig. 7. Measuring station used in the experiment: 1 – measuring card;  

 2 – DC power supply; 3 – ladder network of α1 = 0.5; 4 – boards  
 with external resistors; 5 – ladder network of α2 = 0.7 

The RC ladder network and DC voltage terminals were con-
nected to the measuring card. The discharged circuit was fed with 
a step voltage of 10 V. During the experiment, the dynamics of 
terminal voltage of the ladder circuits with a time step of 1 ms 
were measured. 

Figs. 8 and 9 present the step responses of the fractional-
order RC circuit; further, Tab. 3 presents theoretical curves based 
on Eq. (19) and parameters of the tested circuit elements. 

 
Fig. 8. Measured and theoretical step response of the RC ladder circuit  

 of α1 = 0.5 

 
Fig. 9. Measured and theoretical step response of the RC ladder circuit  

 of α2 = 0.7 
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The accuracy of the results is analysed through a comparison 
of theoretical and measured values of both curves using relative 
error (Eq. [25]): 

𝜀 = |
𝑢𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙−𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
| ∙ 100% (25) 

The relative error curves are presented in Figs. 10 and 11. 

 
Fig. 10. Relative error function of the RC ladder circuit of α1 = 0.5 

 
Fig. 11. Relative error function of the RC ladder circuit of α2 = 0.7 

The relative error in both the cases did not exceed 0.5%. 

8. CONCLUSIONS 

Realisation methods of an RC ladder circuit of fractional order, 
associated with the appropriate selection of its resistance and 
capacitance, were discussed. Previous approaches described by 
Khazali and Tawalbeh [5], as well as Petras, Sierociuk and Pod-
lubny [16], have significant restrictions as to the choice of order of 
derivative α. Despite their simplicity, consisting in a small variation 
of the parameters of the selected elements, the above methods 
require the construction of systems of considerable length in order 
to obtain a wide frequency range in which RC ladder behaves in 
a manner as close as possible to the ideal element of the order 
α1 = 0.5. 

For this reason, the paper considers the case when α is differ-
ent from 0.5 (in this case α =0.7) and compares the obtained 
results with the results of α = 0.5. In this way, the description and 
development of the ladder electrical circuits with α other than 0.5 
were presented, thereby enabling a wider application of fractional 
differential calculus. An approximation based on CFE was used, 
which made it possible to shorten the ladder calculations of elec-

trical circuits. The definition of fractional order by Caputo was also 
used. 

In order to obtain the values of the resistance and capacitance 
of the RC ladder network, consistent with the theoretical values 
calculated based on CFE, a program was developed that selects 
the equivalent, actual resistors and capacitors with the measured 
values and the way of their connection. As a result, the discrepan-
cy between the actual and theoretical values was at most 1%. 

In this way, the circuits consisting of fewer meshes and having 
a wider range of Bode plot compatibility were obtained and 
compared with the results derived by the aforementioned authors. 
The study also shows that for the circuit comprising two real 
fractional elements, the theoretical predictions do not differ from 
the experimental results by more than 0.5% of the measured 
value. 
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