PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A connectionist computational method for face recognition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
Rocznik
Strony
451--465
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Department of Computer Technology, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
autor
  • Department of Computer Technology, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
  • Department of Computer Technology, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
Bibliografia
  • [1] Ahonen, T., Hadid, A. and Pietikainen, M. (2004). Face recognition with local binary patterns, Proceedings of the 8th European Conference on Computer Vision, ECCV 2004, Prague, Czech Republic, pp. 469–481.
  • [2] Azorín-López, J., Saval-Calvo, M., Fuster-Guilló, A. and Oliver-Albert, A. (2014). A predictive model for recognizing human behaviour based on trajectory representation, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, pp. 1494–1501.
  • [3] Baltrusaitis, T., Robinson, P. and Morency, L. (2012). 3D constrained local model for rigid and non-rigid facial tracking, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Providence, RI, USA, pp. 2610–2617.
  • [4] Bańka, S., Dworak, P. and Jaroszewski, K. (2014). Design of a multivariable neural controller for control of a nonlinear MIMO plant, International Journal of Applied Mathematics and Computer Science 24(2): 357–369, DOI: 10.2478/amcs-2014-0027.
  • [5] Belhumeur, P.N., Jacobs, D.W., Kriegman, D. and Kumar, N. (2011). Localizing parts of faces using a consensus of exemplars, Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Colorado Springs, CO, USA, pp. 545–552.
  • [6] Best-Rowden, L., Han, H., Otto, C., Klare, B.F. and Jain, A.K. (2014). Unconstrained face recognition: Identifying a person of interest from a media collection, IEEE Transactions on Information Forensics and Security 9(12): 2144–2157.
  • [7] Canny, J. (1986). A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6): 679–698.
  • [8] Chen, X., Zhang, C., Dong, F. and Zhou, Z. (2013). Parallelization of elastic bunch graph matching (EBGM) algorithm for fast face recognition, Proceedings of the 2013 IEEE China Summit & International Conference on Signal and Information Processing, Beijing, China, pp. 201–205.
  • [9] Costa, J.A.F. (2010). Clustering and visualizing SOM results, Proceedings of the 11th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2010, Paisley, UK, pp. 334–343.
  • [10] Dantone, M., Gall, J., Fanelli, G. and Van Gool, L. (2012). Real-time facial feature detection using conditional regression forests, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Providence, RI, USA, pp. 2578–2585.
  • [11] Di Stefano, L. and Bulgarelli, A. (1999). A simple and efficient connected components labeling algorithm, Proceedings of the International Conference on Image Analysis and Processing, ICIP 1999, Kobe, Japan, pp. 322–327.
  • [12] En-Naimani, Z., Lazaar, M. and Ettaouil, M. (2014). Hybrid system of optimal self organizing maps and hidden Markov model for Arabic digits recognition, WSEAS Transactions on Systems 13(60): 606–616.
  • [13] Espí, R., Pujol, F.A., Mora, H. and Mora, J. (2008). Development of a distributed facial recognition system based on graph-matching, Proceedings of the International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2008, Salamanca, Spain, pp. 498–502.
  • [14] Gao, J. and Fan, L. (2011). Kernel-based weighted discriminant analysis with QR decomposition and its application face recognition, WSEAS Transactions on Mathematics 10(10): 358–367.
  • [15] Gao, J., Fan, L., Li, L. and Xu, L. (2013a). A practical application of kernel-based fuzzy discriminant analysis, International Journal of Applied Mathematics and Computer Science 23(4): 887–903, DOI: 10.2478/amcs-2013-0066.
  • [16] Gao, J., Fan, L. and Xu, L. (2012). Solving the face recognition problem using QR factorization, WSEAS Transactions on Mathematics 11(8): 728–737.
  • [17] Gao, J., Fan, L. and Xu, L. (2013b). Median null(sw)-based method for face feature recognition, Applied Mathematics and Computation 219(12): 6410–6419.
  • [18] Georghiades, A.S., Belhumeur, P.N. and Kriegman, D.J. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 643–660.
  • [19] Gocławski, J., Sekulska-Nalewajko, J. and Kuźniak, E. (2012). Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses, International Journal of Applied Mathematics and Computer Science 22(3): 669–684, DOI: 10.2478/v10006-012-0050-5.
  • [20] González-Jiménez, D. and Alba-Castro, J.L. (2007). Shape-driven Gabor jets for face description and authentication, IEEE Transactions on Information Forensics and Security 2(4): 769–780.
  • [21] Guo, G., Mu, G. and Ricanek, K. (2010). Cross-age face recognition on a very large database: The performance versus age intervals and improvement using soft biometric traits, Proceedings of the 20th International Conference on Pattern Recognition, ICPR, Istanbul, Turkey, pp. 3392–3395.
  • [22] Hsu, R.-L., Abdel-Mottaleb, M. and Jain, A.K. (2002). Face detection in color images, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5): 696–706.
  • [23] Huang, G. B., Ramesh, M., Berg, T. and Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments, Technical Report 07-49, University of Massachusetts, Amherst, MA.
  • [24] Huang, S.M. and Yang, J.F. (2013). Linear discriminant regression classification for face recognition, Signal Processing Letters 20(1): 91–94.
  • [25] Jin, X., Tan, X. and Zhou, L. (2013). 3D constrained local model for rigid and non-rigid facial tracking, Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG13, Shanghai, China, pp. 1–8.
  • [26] Kayarvizhy, N., Kanmani, S. and Uthariaraj, R. (2014). ANN models optimized using swarm intelligence algorithms, WSEAS Transactions on Computers 13(45): 501–519.
  • [27] Khatun, A. and Bhuiyan, M. (2011). Neural network based face recognition with Gabor filters, International Journal of Computer Science and Network Security 11(1): 71–74.
  • [28] Kohonen, T. (2001). Self-Organising Maps, 3rd Edition, Springer-Verlag, Berlin/Heidelberg.
  • [29] Kotropoulos, C. and Pitas, I. (1997). Rule-based face detection in frontal views, IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, pp. 2537–2540.
  • [30] Kumar, A. and Kumar, S. (2015). An improved neural network based approach for identification of self & non-self processes, WSEAS Transactions on Computers 14(28): 272–286.
  • [31] Lai, Z., Xu, Y., Chen, Q., Yang, J. and Zhang, D. (2014). Multilinear sparse principal component analysis, IEEE Transactions on Neural Networks and Learning Systems 25(10): 1942–1950.
  • [32] Lee, K.-C., Ho, J. and Kriegman, D.J. (2005). Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5): 684–698.
  • [33] Li, J.-B., Chu, S.-C. and Pan, J.-S. (2014). Kernel Learning Algorithms for Face Recognition, Springer, New York, NY.
  • [34] Loderer, M., Pavlovicova, J., Feder, M. and Oravec, M. (2014). Data dimension reduction in training strategy for face recognition system, Proceedings of the IEEE 2014 International Conference on Systems, Signals and Image Processing, IWSSIP, Dubrovnik, Croatia, pp. 263–266.
  • [35] Mitra, S., Parua, S., Das, A. and Mazumdar, D. (2011). A novel datamining approach for performance improvement of EBGM based face recognition system to handle large database, Proceedings of the 1st International Conference on Computer Science and Information Technology, CCSIT 2011, Bangalore, India, pp. 532–541.
  • [36] Monzo, D., Albiol, A. and Mossi, J.M. (2010). A comparative study of facial landmark localization methods for face recognition using hog descriptors, Proceedings of the 20th International Conference on Pattern Recognition, ICPR, Istanbul, Turkey, pp. 1330–1333.
  • [37] Murthy, C.A. and Pal, S.K. (1990). Fuzzy thresholding: Mathematical framework, bound functions and weighted moving average technique, Pattern Recognition Letters 11(3): 197–206.
  • [38] Phillips, P.J., Moon, H., Rizvi, S.A. and Rauss, P.J. (2000). The FERET evaluation methodology for face recognition algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10): 1090–1104.
  • [39] Piegat, A. (2005). A new definition of the fuzzy set, International Journal of Applied Mathematics and Computer Science 15(1): 125–140.
  • [40] Pujol, F., Espí, R., Mora, H. and Sánchez, J. (2008). A fuzzy approach to skin color detection, Proceedings of the 7th Mexican International Conference on Artificial Intelligence, MICAI 2008, Atizapan de Zaragoza, Mexico, pp. 532–542.
  • [41] Rattani, A., Agarwal, N., Mehrotra, H. and Gupta, P. (2006). An efficient fusion-based classifier, Proceedings of the Workshop on Computer Vision, Graphics and Image Processing, WCVGIP, Hyderabad, India, pp. 104–109.
  • [42] Sarkar, S. (2012). Skin segmentation based elastic bunch graph matching for efficient multiple face recognition, Proceedings of the 2nd International Conference on Computer Science, Engineering and Applications, ICCSEA 2012, New Delhi, India, pp. 31–40.
  • [43] Shen, L. and Bai, L. (2006). A review on Gabor wavelets for face recognition, Pattern Analysis and Applications 9(2): 273–292.
  • [44] Shin, Y.J. and Park, C.H. (2011). Analysis of correlation based dimension reduction methods, International Journal of Applied Mathematics and Computer Science 21(3): 549–558, DOI: 10.2478/v10006-011-0043-9.
  • [45] Taigman, Y., Yang, M., Ranzato, M.A., and Wolf, L. (2015). Web-scale training for face identification, IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, pp. 2746–2754.
  • [46] Tran, H.L., Pham, V.N. and Vuong, H.N. (2014). Multiple neural network integration using a binary decision tree to improve the ECG signal recognition accuracy, International Journal of Applied Mathematics and Computer Science 24(3): 647–655, DOI: 10.2478/amcs-2014-0047.
  • [47] Turk, M. and Pentland, A. (1991). Eigenfaces for recognition, Journal of Cognitive Neuroscience 3(1): 71–86.
  • [48] Viola, P. and Jones, M.J. (2004). Robust real-time face detection, International Journal of Computer Vision 57(2): 137–154.
  • [49] Vu, N.S. and Caplier, A. (2012). Enhanced patterns of oriented edge magnitudes for face recognition and image matching, IEEE Transactions on Image Processing 21(3): 1352–1365.
  • [50] Wiskott, L., Fellous, J.-M., Kruger, N. and von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7): 775–789.
  • [51] Yang, J., Fu, Z. and Tan, T. (2004). Skin color detection using multiple cues, Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, pp. 632–635.
  • [52] Yang, M., Zhang, L., Shiu, S.K. and Zhang, D. (2013). Robust kernel representation with statistical local features for face recognition, IEEE Transactions on Neural Networks and Learning Systems 24(6): 900–912.
  • [53] Yin, H. (2008). The self-organizing maps: Background, theories, extensions and applications, in J. Fulcher and L.C.J. Lakhmi (Eds.), Computational Intelligence: A Compendium, Springer-Verlag, Berlin, pp. 715–762.
  • [54] Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8(3): 338–353.
  • [55] Zheng, W., Lai, J., Xie, X., Liang, Y., Yuen, P. C. and Zou, Y. (2011). Kernel methods for facial image preprocessing, in P. Wang (Ed.), Pattern Recognition, Machine Intelligence and Biometrics, Springer, Berlin/Heidelberg, pp. 389–409.
  • [56] Zhong, F., Zhang, J. and Li, D. (2014). Discriminant locality preserving projections based on L1-norm maximization, IEEE Transactions on Neural Networks and Learning Systems 25(11): 2065–2074.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ca06064-fdbf-4f8b-aa42-0a3a2d3bb02c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.