PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indirect estimation of black carbon concentration in traffic site based on other pollutants : time variability analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming to create more sustainable cities it is necessary to understand and manage different ecological factors which influence human health. One of such factors is black carbon (BC) in atmosphere, which currently is not commonly monitored by environmental monitoring systems. The aim of this research was to estimate by indirect approach the relation between eBC (equivalent of black carbon) concentration and other air pollutants in order to define approximate level of eBC in more efficient approach. The study was conducted in Wrocław (Poland) in October 2021, and combined data on eBC concentration (measured by microaethalometer), air quality (from national environmental monitoring system) and traffic (from municipal traffic management system). Quantile regression was used to assess the relationship between the concentrations of pollutants. The obtained results show that for rise 1 mg∙m-3 of carbon monoxide, eBC concentration rise between 4.2 and 8.0 μg∙m-3, depending on the period of a day. Precision of eBC concentration evaluation is influenced by sun light which results in higher precision of defining a scaling factor for night hours. Outcomes of this study constitute an added value to understanding of interconnections between different factors describing environmental conditions in cities and might be helpful for more effective environmental assessment of human habitats.
Wydawca
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Department of Applied Mathematics, Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Institute of Spatial Management, Grunwaldzka 53, 50-357, Wrocław, Poland
Bibliografia
  • Artíñano, B. et al. (2003) “Anthropogenic and natural influence on the PM10 and PM2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes,” Environmental Pollution, 125(3), pp. 453–465. Available at: https://doi.org/10.1016/S0269-7491(03)00078-2.
  • Bandyopadhyay, A. et al. (2022) “The role of nuclear energy consumption in abatement of ecological footprint: Novel insights from quantile-on-quantile regression,” Journal of Cleaner Production, 358, 132052. Available at: https://doi.org/10.1016/J.JCLEPRO.2022.132052.
  • Barandica, J.M. et al. (2014) “Estimation of CO2 emissions in the life cycle of roads through the disruption and restoration of environmental systems,” Ecological Engineering, 71, pp. 154–164. Available at: https://doi.org/10.1016/J.ECOLENG.2014.07.009.
  • Becerril-Valle, M. et al. (2017) “Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain,” Atmospheric Environment, 169, pp. 36–53. Available at: https://doi.org/10.1016/J.ATMOSENV.2017.09.014.
  • Bond, T.C. et al. (2004) “A technology-based global inventory of black and organic carbon emissions from combustion,” Journal of Geophysical Research: Atmospheres, 109(14). Available at: https://doi.org/10.1029/2003JD003697.
  • Bond, T.C. et al. (2013) “Bounding the role of black carbon in the climate system: A scientific assessment,” Journal of Geophysical Research: Atmospheres, 118(11), pp. 5380–5552. Available at: https://doi.org/10.1002/jgrd.50171.
  • Chiliński, M.T., Markowicz, K.M. and Kubicki, M. (2018) “UAS as a support for atmospheric aerosols research: Case study,” Pure and Applied Geophysics, 175(9), pp. 3325–3342. Available at: https://doi.org/10.1007/s00024-018-1767-3.
  • Chrobak, G. et al. (2021) “Ecological state evaluation of lake ecosystems revisited: Latent variables with kSVM algorithm approach for assessment automatization and data comprehension,” Ecological Indicators, 125, 107567. Available at: https://doi.org/10.1016/J.ECOLIND.2021.107567.
  • Cougo, C.M. dos S. et al. (2018). “Multiscale hybrid composites with carbon-based nanofillers,” in A. Khan et al. (eds.) Nanocarbon and its composites: preparation, properties and applications. Woodhead Publishing Series in Composites Science and Engineering. Sawston: Woodhead Publishing, pp. 449–470. Available at: https://doi.org/10.1016/B978-0-08-102509-3.00014-6.
  • Dons, E. et al. (2012) “Personal exposure to black carbon in transport microenvironments,” Atmospheric Environment, 55, pp. 392–398. Available at: https://doi.org/10.1016/J.ATMOSENV.2012.03.020.
  • EEA (2013) “Status of black carbon monitoring in ambient air in Europe,” Technical Report, 18/2013. Available at: https://doi.org/10.2800/10150.
  • EEA (2021) European city air quality viewer. Copenhagen: European Enviromnent Agency. Available at: https://www.eea.europa.eu/themes/air/urban-air-quality/european-city-air-quality-viewer (Accessed: June 10, 2022).
  • Fitzenberger, B. et al. (2022). “Economic applications of quantile regression 2.0,” Empirical Economics, 62, pp. 1–6. Available at: https://doi.org/10.1007/s00181-021-02186-1.
  • Gorzelnik, T. and Oleniacz, R. (2019) “Suitability analysis of new air quality monitoring stations in Krakow as related to assessment of spatial and temporal variability of PM10 concentrations,” Geomatics and Environmental Engineering, 13(2), pp. 31–45. Available at: https://doi.org/10.7494/geom.2019.13.2.31.
  • Gu, Y. et al. (2020). “Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China,” Resources, Conservation and Recycling, 159, 104812. Available at: https://doi.org/10.1016/J.RESCONREC.2020.104812.
  • Hansen, A.D.A., Rosen, H. and Novakov, T. (1984) “The aethalometer – An instrument for the real-time measurement of optical absorption by aerosol particles,” Science of the Total Environment, 36, pp. 191–196. Available at: https://doi.org/10.1016/0048-9697(84)90265-1.
  • Hristova, E. et al. (2022) “Black carbon in Bulgaria – Observed and modelled concentrations in two cities for two months,” Atmosphere, 13(2), 213. Available at: https://doi.org/10.3390/atmos13020213.
  • Kamińska, J.A., Turek, T. and Kazak J.K. (2022) “Exposure of pedestrians and cyclists to air pollution in the city,” Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, 184. Available at: https://doi.org/10.11159/iceptp22.184.
  • Ke, J., Khanna, N. and Zhou, N. (2022) “Indirect estimation of willingness to pay for energy technology adoption,” Applied Energy, 312, 118701. Available at: https://doi.org/10.1016/J.APENERGY.2022.118701.
  • Klejnowski, K., Janoszka, K. and Czaplicka, M. (2017) “Characterization and seasonal variations of organic and elemental carbon and Levoglucosan in PM10 in Krynica Zdroj, Poland,” Atmosphere, 8(12), 190. Available at: https://doi.org/10.3390/atmos8100190.
  • Koenker, R. (2005). Quantile regression. Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511754098.
  • Koenker, R. et al. (no date). Quantreg. Quantile Regression. Available at: https://cran.r-project.org/package=quantreg (Accessed: June 15, 2022).
  • Latha, K.M. and Badarinath, K.V.S. (2004) “Correlation between black carbon aerosols, carbon monoxide and tropospheric ozone over a tropical urban site,” Atmospheric Research, 71(4), pp. 265–274. Available at: https://doi.org/10.1016/J.ATMOSRES.2004.06.004.
  • Lin, W. et al. (2019) “Integrated assessment of health risk and climate effects of black carbon in the Pearl River Delta region, China,” Environmental Research, 176, 108522. Available at: https://doi.org/10.1016/J.ENVRES.2019.06.003.
  • Luoma, K. et al. (2021) “Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland,” Atmospheric Chemistry and Physics, 21(2), pp. 1173–1189. Available at: https://doi.org/10.5194/acp-21-1173-2021.
  • Maciejewska, K. et al. (2015) “Modelling of black carbon statistical distribution and return periods of extreme concentrations,” Environmental Modelling and Software, 74, pp. 212–226. Available at: https://doi.org/10.1016/j.envsoft.2015.04.016.
  • Matos, M.P. et al. (2019) “Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images,” Science of the Total Environment, 676, pp. 333–342. Available at: https://doi.org/10.1016/J.SCITOTENV.2019.04.168.
  • McRoberts, R.E. et al. (2015) “Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data,” Remote Sensing of Environment, 164, pp. 36–42. Available at: https://doi.org/10.1016/J.RSE.2015.02.018.
  • Munir, S., Chen, H. and Ropkins, K. (2014) “Characterising the temporal variations of ground-level ozone and its relationship with traffic-related air pollutants in the United Kingdom: a quantile regression approach,” International Journal of Sustainable Development and Planning, 9(1), pp. 29–41. Available at: https://doi.org/10.2495/SDP-V9-N1-29-41.
  • Pan, X.L. et al. (2011) “Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China,” Atmospheric Chemistry and Physics, 11(18), pp. 9735–9747. Available at: https://doi.org/10.5194/acp-11-9735-2011.
  • Peralta, A.A. et al. (2022) “Quantile regression to examine the association of air pollution with subclinical atherosclerosis in an adolescent population,” Environment International, 164, 107285. Available at: https://doi.org/10.1016/J.ENVINT.2022.107285.
  • Peralta, O. et al. (2019) “Atmospheric black carbon concentrations in Mexico,” Atmospheric Research, 230, 104626. Available at: https://doi.org/10.1016/j.atmosres.2019.104626.
  • Posyniak, M.A., et al. (2021) “Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland,” Atmospheric Pollution Research, 12(9), 101171. Available at: https://doi.org/10.1016/J.APR.2021.101171.
  • Rovira, J. et al. (2022) “Non-linear models for black carbon exposure modelling using air pollution datasets,” Environmental Research, 212, 113269. Available at: https://doi.org/10.1016/J.ENVRES.2022.113269.
  • Sahu, S.C., Mohanta, M.R. and Kumar, J. (2022) “Quantitative estimation of reclamation status of a dry secondary forest using “measure of climax”: A novel approach,” Ecological Engineering, 180, 106660. Available at: https://doi.org/10.1016/J.ECOLENG.2022.106660.
  • Samek, L. et al. (2017) “Quantitative assessment of PM 2.5 sources and their seasonal variation in Krakow,” Water, Air, and Soil Pollution, 228(8). Available at: https://doi.org/10.1007/s11270-017-3483-5.
  • Suganuma, H. et al. (2019) “Estimation of CO 2 sequestration potential by afforestation in the arid rangelands of Western Australia based on long-term empirical data,” Ecological Engineering, 133, pp. 109–120. Available at: https://doi.org/10.1016/J.ECOLENG.2019.04.015.
  • Tiwari, S. et al. (2021) “Impacts of black carbon on environment and health,” in C. Hussain, S. Shukla, G. Joshi (eds.) Functionalized nanomaterials based devices for environmental applications. Micro and nano Technologies. Amsterdam: Elsevier, pp. 107–125. Available at: https://doi.org/10.1016/B978-0-12-822245-4.00007-6.
  • Vasseur, S.P., and Aznarte, J.L. (2021) “Comparing quantile regression methods for probabilistic forecasting of NO 2 pollution levels,” Scientific Reports, 11(1). Available at: https://doi.org/10.1038/S41598-021-90063-3.
  • Wai, T.H. et al. (2022) “Insights from application of a hierarchical spatio-temporal model to an intensive urban black carbon monitoring dataset,” Atmospheric Environment, 277, 119069. Available at: https://doi.org/10.1016/J.ATMOSENV.2022.119069.
  • Westberg, K., Cohen, N. and Wilson, K.W. (1971) “Carbon monoxide: Its role in photochemical smog formation,” Science, 171(3975), pp. 1013–1015. Available at: http://www.jstor.org/stable/1731315 (Accessed: June 10, 2022).
  • WHO (2021) WHO global air quality guidelines: Particulate matter (PM 2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Bonn: World Health Organization Available at: https://apps.who.int/iris/handle/10665/345329 (Accessed: June 10, 2022).
  • Yamineva, Y. and Liu, Z. (2019) “Cleaning the air, protecting the climate: Policy, legal and institutional nexus to reduce black carbon emissions in China,” Environmental Science & Policy, 95, pp. 1–10. Available at: https://doi.org/10.1016/J.ENVSCI.2019.01.016.
  • Yan, D. et al. (2020) “The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression,” Applied Energy, 272, 115246. Available at: https://doi.org/10.1016/J.APENERGY.2020.115246.
  • Zioła, N., Błaszczak, B. and Klejnowski, K. (2021) “Long-term eBC measurements with the use of MAAP in the polluted urban atmosphere (Poland),” Atmosphere, 12(7), 808. Available at: https://doi.org/10.3390/atmos12070808.
  • Zioła, N. et al. (2021). “Temporal variability of equivalent black carbon components in atmospheric air in Southern Poland,” Atmosphere, 12(1), 119. Available at: https://doi.org/10.3390/at-mos12010119.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c9cc48e-6d74-40a3-9bd3-750c44d273cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.