PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoelastic wave finite difference modeling in the presence of topography with adaptive free surface boundary condition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An accurate free-surface boundary condition is significant for seismic forward modeling and inversion. The finite-difference method (FDM) is widely used for its simplicity and efficiency. However, unlike the finite-element method (FEM) satisfying naturally the stress-free condition at the free surface, FDM needs additional treatment, particularly in the presence of irregular topography. In the elastic wave finite-difference modeling, the adaptive parameter-modified free-surface boundary condition has the advantages of high accuracy and simple operation. The viscoelastic wave equation can describe the nature of seismic waves more realistically. Based on the staggered-grid FDM, we extend the adaptive free-surface boundary condition to the viscoelastic medium with topography. This approach involves a combination of the average medium theory, vacuum approximation and limit idea. It is realized by modifying the viscoelastic constitutive relation. This method is simple enough, because three types of grid elements and in fact only two kinds of expressions are enough in the presence of topography. We only need to deal with the Lamé parameters and the density at the free surface without reconstructing the existing algorithm. Viscoelastic analysis of different quality factor settings shows the viscous effect. Numerical examples display that the results of the presented method agree well with the reference solutions of spectral-element method both in crest- and trough-like model and in simplified Foothill model with irregular topography. The simulation of original Foothill model demonstrates the feasibility of our method.
Czasopismo
Rocznik
Strony
2205--2217
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
Bibliografia
  • 1. Aki K, Richards PG (1980) Quantitative seismology, theory and methods I: W. H. Freeman and Company
  • 2. Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite difference methods. Bull Seismol Soc Am 58:367–398
  • 3. Blanch JO, Robertsson JO, Symes WW (1993) Viscoelastic finite-difference modeling. SEG Tech Program Expand Abstr 1993:990–993
  • 4. Boore DM (1972) Finite difference methods for seismic wave propagation in heterogeneous materials. Methods Comput Phys 11:1–37
  • 5. Cao J, Chen JB (2018) A parameter-modified method for implementing surface topography in elastic-wave finite-difference modeling. Geophysics 83:T313–T332
  • 6. Cao J, Chen JB, Dai MX (2018) An adaptive free-surface expression for three-dimensional finite-difference frequency-domain modelling of elastic wave. Geophys Prospect 66:707–725
  • 7. Carcione JM, Kosloff D, Kosloff R (1988) Wave propagation simulation in a linear viscoelastic medium. Geophys J Int 95:597–611
  • 8. Carcione JM (1987) Wave propagation simulation in real media. Dissertation, Tel Aviv University
  • 9. Chen H, Zhou H, Zhang Q, Chen Y (2016) Modeling elastic wave propagation using K-space operator-based temporal high-order staggered-grid finite-difference method. IEEE Trans Geosci Remote Sens 55(2):801–815
  • 10. Fichtner A (2010) Full seismic waveform modelling and inversion. Springer, Berlin
  • 11. Gray SH, Marfurt KJ (1995) Migration from topography: Improving the near-surface image. Can J Explor Geophys 31:18–24
  • 12. Guo P, Mcmechan GA (2017) Evaluation of three first-order isotropic viscoelastic formulations based on the generalized standard linear solid. J Seism Explor 26:199–226
  • 13. Jih RS, McLaughlin KL, Der ZA (1988) Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme. Geophysics 53:1045–1055
  • 14. Kelly KR, Ward RW, Treitel S, Alford RM (1976) Synthetic seismograms: a finite difference approach. Geophysics 41:2–27
  • 15. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72:SM155–SM167
  • 16. Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368–392
  • 17. Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53:1425–1436
  • 18. Martin R, Komatitsch D (2009) An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys J Int 179:333–344
  • 19. Mittet R (2002) Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics 67:1616–1623
  • 20. Moczo P, Kristek J, Vavrycuk V, Archuleta RJ, Halada L (2002) 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull Seismol Soc Am 92:3042–3066
  • 21. Robertsson JO (1996) A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 61:1921–1934
  • 22. Robertsson JO, Blanch JO, Symes WW (1994) Viscoelastic finite-difference modeling. Geophysics 59:1444–1456
  • 23. SPECFEM2D Team (2015) SPECFEM 2D user manual version 7.0: Princeton University (USA), CNRS and University of Marseille (France)
  • 24. Strang G, Fix GJ (1973) An analysis of the finite element method. Mathematics of Computation 41
  • 25. Tan S, Huang L (2014) An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophys J Int 197(2):1250–1267
  • 26. Tarrass I, Giraud L, Thore P (2011) New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophys Prospect 59:889–906
  • 27. Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phy 3:1–32
  • 28. Vidale JE, Clayton RW (1986) A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation. Geophysics 51:2247–2249
  • 29. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51:889–901
  • 30. Xu Y, Xia J, Miller RD (2007) Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics 72:SM147–SM153
  • 31. Zhou H, Liu Y, Wang J (2021) Elastic wave modeling with high-order temporal and spatial accuracies by a selectively modified and linearly optimized staggered-grid finite-difference scheme. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3078626
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c9642d1-364c-4271-8fc7-0aa64c7c21b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.