PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of properties of friction stir spot welded joints of AA7075‑T651/Ti‑6Al‑4V alloy using machine learning algorithms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, experimental works on friction stir spot welding (FSSW) of dissimilar AA 7075-T651/ Ti-6Al-4V alloys under various process conditions to weld joints have been reviews and multiple machine learning algorithms have been applied to forecast tensile shear strength. The influences of welding parameters such as dwell period and revolving speed on the mechanical and microstructural characteristics of weld joints were examined. Microstructural analyses were conducted using optical and scanning electron microscopy (SEM-EDS). The maximum tensile shear strength of 3457.2 N was achieved at the revolving speed of 1000 rpm and dwell period of 10 s. Dwell period has significant impact on the tensile shear strength of weld joints. A sharp decline (74.70%) in tensile shear strength was observed at longer dwell periods and high revolving speeds. In addition, a considerable improvement of 53.38% was observed in tensile shear strength at low dwell periods and high revolving speeds. Most significant machine learning data-driven methods used in welding such as, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and regression model were used to forecast the tensile shear strength of welded joints at selected welding parameters. The performance of each model was examined in training and validation stages and compared with experimental data. To evaluate the performance of the developed models, the two quantitative standard statistical measures of prediction error % and root mean squared error (RMSE) were applied. The performance of regression, ANN, ANFIS and SVM were compare and SVM regression model was found to perform better than ANN and ANFIS in forecasting the tensile shear strength of FSSW joints.
Rocznik
Strony
art. no. e94, 1--19
Opis fizyczny
Bibliogr. 73 poz., il., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
  • Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, South Africa
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
  • Koç University Surface Science and Technology Center (KUYTAM), Sariyer, Istanbul, Turkey
  • Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
Bibliografia
  • 1. Pollock TM. Weight loss with magnesium alloys. Science. 2010;328:986-987.
  • 2. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;1980–2015(56):862-871.
  • 3. Wang SQ, Patel VK, Bhole SD, Wen GD, Chen DL. Microstructure and mechanical properties of ultrasonic spot welded Al/Ti alloy joints. Mater Des. 2015;78:33-41.
  • 4. Chen S, Li L, Chen Y, Dai J, Huang J. Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Mater Des. 2011;32:4408-16.
  • 5. Cooke KO, Atieh AM. Current trends in dissimilar diffusion bonding of titanium alloys to stainless steels, aluminium and magnesium. J Manuf Mater Process. 2020;4:39.
  • 6. Zhang Y, Zhou J, Sun D, Gu X. Nd:YAG laser welding of dissimilar metals of titanium alloy to stainless steel without filler metal based on a hybrid connection mechanism. J Mater Res Technol. 2020;9:1662-72.
  • 7. Drozdov AA, Povarova KB, Valitov VA, Galieva EV, Arginbaeva EG, Bazyleva OA, Bulakhtina MA, Raevskikh AN. Effect of the temperature of pressure welding of a wrought EP975 nickel alloy and a single-crystal intermetallic VKNA-25 alloy on the structure and properties of the welded joints. Russ Metall (Met). 2020;2020:752-9
  • 8. Liu Y, Zhao H, Peng Y, Ma X. Mechanical properties of the inertia friction welded aluminum/stainless steel joint. Weld World. 2019;63:1601-11.
  • 9. Zhou L, Min J, He WX, Huang YX, Song XG. Effect of welding time on microstructure and mechanical properties of Al-Ti ultrasonic spot welds. J Manuf Process. 2018;33:64-73.
  • 10. Peyre P, Berthe L, Dal M, Pouzet S, Sallamand P, Tomashchuk I. Generation and characterization of T40/A5754 interfaces with lasers. J Mater Process Technol. 2014;214:1946-53.
  • 11. Iwashita T (2003) Method and apparatus for joining, ed. Google Patents.
  • 12. Hossain MAM, Hasan MT, Hong S-T, Miles M, Cho H-H, Han HN. Mechanical behaviors of friction stir spot welded joints of dissimilar ferrous alloys under opening-dominant combined loads. Adv Mater Sci Eng. 2014;2014:1-12.
  • 13. Connolly C. Friction spot joining in aluminium car bodies. Ind Robot. 2007;34:17-20.
  • 14. Prius T (2004) Best engineered vehicle of 2004. Automot Eng Int.
  • 15. Marsland S. Machine learning: an algorithmic perspective. Boca Raton: CRC Press; 2015.
  • 16. Shanavas S, Edwin Raja Dhas J. Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Trans Nonferr Met Soc China. 2017;27:2334-44.
  • 17. Gholami R, Moradzadeh A, Maleki S, Amiri S, Hanachi J. Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J Pet Sci Eng. 2014;122:643-56.
  • 18. Duda RO, Hart PE. Pattern classification. New York: Wiley; 2006.
  • 19. Kar S, Das S, Ghosh PK. Applications of neuro fuzzy systems: a brief review and future outline. Appl Soft Comput. 2014;15:243-59.
  • 20. Valizadeh N, El-Shafie A. Forecasting the level of reservoirs using multiple input fuzzification in ANFIS. Water Resour Manag. 2013;27:3319-31.
  • 21. Lin J-Y, Cheng C-T, Chau K-W. Using support vector machines for long-term discharge prediction. Hydrol Sci J. 2006;51:599-612.
  • 22. Shojaeefard MH, Behnagh RA, Akbari M, Givi MKB, Farhani F. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater Des. 2013;44:190-8.
  • 23. Dewan MW, Huggett DJ, Warren Liao T, Wahab MA, Okeil AM. Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Mater Des. 2016;92:288-299.
  • 24. Armansyah AW, Saedon J, Ho H-C, Adenan S. Load level prediction system model of friction stir spot welded aluminium alloy using support vector machine. IOP Conf Ser Earth Environ Sci. 2018;195: 012033.
  • 25. Panda BN, Babhubalendruni MVAR, Biswal BB, Rajput DS. Application of artificial intelligence methods to spot welding of commercial aluminum sheets (B.S. 1050). In: Proceedings of fourth international conference on soft computing for problem solving, New Delhi, 2015. 2015. pp. 21-32.
  • 26. Jis JIS (1999) Z3136. Method of tension shear test for spot welded joint. Japanese Standarts Association.
  • 27. Standard A. E384, Standard test method for microindentation hardness of materials. West Conshohocken: ASTM International; 2000.
  • 28. Nasir T, Asmaela M, Zeeshana Q, Solyalib D. Applications of machine learning to friction stir welding process optimization. J Kejuruteraan. 2020;32:171-186.
  • 29. Wang S-C. Artificial neural network. In: Wang S-C, editor. Interdisciplinary computing in java programming. Boston: Springer US; 2003.
  • 30. Boldsaikhan E, Corwin EM, Logar AM, Arbegast WJ. The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Appl Soft Comput. 2011;11:4839-46.
  • 31. Jang JS. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 1993;23:665-685.
  • 32. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern. 1985;SMC-15(1):116-132.
  • 33. Sugeno M, Kang GT. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988;28:15-33.
  • 34. Vapnik V. The nature of statistical learning theory. Berlin: Springer; 2013.
  • 35. Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems 9, MA, MIT Press, Cambridge. p. 281-7.
  • 36. Basak D, Pal S, Patranabis D. Support vector regression. Neural Inf Process Lett Rev. 2007;11.
  • 37. Vardhan H, Kumar Bayar R. Rock engineering design: properties and applications of sound level. Boca Raton: CRC Press; 2019.
  • 38. Abdollah-Zadeh A, Saeid T, Sazgari B. Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Compd. 2008;460:535-8.
  • 39. Kalaf O, Nasir T, Asmael M, Safaei B, Zeeshan Q, Motallebzadeh A, Hussain G. Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayer. Nanotechnol Rev. 2021;10:201-9.
  • 40. Zhou L, Li GH, Zhang RX, Zhou WL, He WX, Huang YX, Song XG. Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. J Alloys Compd. 2019;775:372-382.
  • 41. Yang Q, Mironov S, Sato YS, Okamoto K. Material flow during friction stir spot welding. Mater Sci Eng A. 2010;527:4389-98.
  • 42. Rao HM, Yuan W, Badarinarayan H. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des. 2015;1980–2015(66):235-245.
  • 43. Asmael MBA, Glaissa MAA. Effects of rotation speed and dwell time on the mechanical properties and microstructure of dissimilar aluminum-titanium alloys by friction stir spot welding (FSSW). Materwiss Werksttech. 2020;51:1002-8.
  • 44. Rana PK, Narayanan RG, Kailas SV. Assessing the dwell time effect during friction stir spot welding of aluminum polyethylene multilayer sheets by experiments and numerical simulations. Int J Adv Manuf Technol. 2021.
  • 45. Rao HM, Jordon JB, Barkey ME, Guo YB, Su X, Badarinarayan H. Influence of structural integrity on fatigue behavior of friction stir spot welded AZ31 Mg alloy. Mater Sci Eng A. 2013;564:369-80.
  • 46. Kar A, Suwas S, Kailas SV. Two-pass friction stir welding of aluminum alloy to titanium alloy: a simultaneous improvement in mechanical properties. Mater Sci Eng A. 2018;733:199-210.
  • 47. Xue X, Pereira A, Vincze G, Wu X, Liao J. Interfacial characteristics of dissimilar Ti6Al4V/AA6060 lap joint by pulsed Nd:YAG laser welding. Metals. 2019;9:71.
  • 48. Zhao Y, Liu H, Yang T, Lin Z, Hu Y. Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy. Int J Adv Manuf Technol. 2015;83:1467-75.
  • 49. Su J-Q, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405:277-86.
  • 50. Effertz PS, Infante V, Quintino L, Suhuddin U, Hanke S, dos Santos JF. Fatigue life assessment of friction spot welded 7050-T76 aluminium alloy using Weibull distribution. Int J Fatigue. 2016;87:381-90.
  • 51. Liu K, Li Y, Wei S, Wang J. Interfacial microstructural characterization of Ti/Al joints by gas tungsten arc welding. Mater Manuf Process. 2014;29:969-974.
  • 52. Sujata M, Bhargava S, Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al. J Mater Sci Lett. 1997;16:1175-8.
  • 53. Plaine AH, Suhuddin UFH, Afonso CRM, Alcântara NG, dos Santos JF. Interface formation and properties of friction spot welded joints of AA5754 and Ti6Al4V alloys. Mater Des. 2016;93:224-31.
  • 54. Nasir T, Kalaf O, Asmael M, Zeeshan Q, Safaei B, Hussain G, Motallebzadeh A. The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural properties. Nanotechnol Rev. 2021;10:401-13.
  • 55. Klassen T, Oehring M, Bormann R. The early stages of phase formation during mechanical alloying of Ti–Al. J Mater Res. 2011;9:47-52.
  • 56. Salishchev GA, Imayev RM, Imayev VM, Gabdullin NK. Dynamic recrystallization in TiAl and Ti3Al intermetallic compounds. Mater Sci Forum. 1993;113-115:613-8.
  • 57. Esmaeili A, Besharati Givi MK, Zareie Rajani HR. Experimental investigation of material flow and welding defects in friction stir welding of aluminum to brass. Mater Manuf Process. 2012;27:1402-8.
  • 58. Kim YC, Fuji A. Factors dominating joint characteristics in Ti-Al friction welds. Sci Technol Weld Join. 2002;7:149-154.
  • 59. Wu A, Song Z, Nakata K, Liao J, Zhou L. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061. Mater Des. 2015;71:85-92.
  • 60. Plaine AH, Gonzalez AR, Suhuddin UFH, dos Santos JF, Alcântara NG. The optimization of friction spot welding process parameters in AA6181-T4 and Ti6Al4V dissimilar joints. Mater Des. 2015;83:36-41.
  • 61. Farmanbar N, Mousavizade SM, Ezatpour HR. Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding. Mar Struct. 2019;65:197-214.
  • 62. Nasir T, Kalaf O, Asmael M. Effect of rotational speed, and dwell time on the mechanical properties and microstructure of dissimilar AA5754 and AA7075-T651 aluminum sheet alloys by friction stir spot welding. Mater Sci. 2021;27:308-312.
  • 63. Kubit A, Kluz R, Trzepieciński T, Wydrzyński D, Bochnowski W. Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets. Arch Civ Mech Eng. 2018;18:235-244.
  • 64. Shen Z, Chen Y, Hou JSC, Yang X, Gerlich AP. Influence of processing parameters on microstructure and mechanical performance of refill friction stir spot welded 7075-T6 aluminium alloy. Sci Technol Weld Join. 2014;20:48-57.
  • 65. Li G, Zhou L, Zhou W, Song X, Huang Y. Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum–copper metals. J Mater Res Technol. 2019;8:2613-24.
  • 66. Chen YH, Wei P, Ni Q, Ke LM. Influence of friction stir welding process on the weld formation and tensile strength of titanium and aluminum dissimilar alloys welded joint. Adv Mat Res. 2011;189-193:3266-9.
  • 67. Choi J-W, Liu H, Fujii H. Dissimilar friction stir welding of pure Ti and pure Al. Mater Sci Eng A. 2018;730:168-176.
  • 68. Shen Z, Yang X, Zhang Z, Cui L, Li T. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des. 2013;44:476-86.
  • 69. Lin Y-C, Liu J-J, Lin B-Y, Lin C-M, Tsai H-L. Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds. Mater Des. 2012;35:350-7.
  • 70. Garcia-Castillo FA, García-Vázquez FDJ, Reyes-Valdés FA, Zambrano-Robledo PDC, Hernández-Munoz GM, Rodríguez-Ramos ER. Microstructural evolution in Ti-6Al-4V alloy joints using the process of friction stir spot welding. Weld Int. 2018;32:570-578.
  • 71. Haykin S, Network N. A comprehensive foundation. NNet. 2004;2:41.
  • 72. Kayri M. Predictive abilities of Bayesian regularization and Levenberg-Marquardt algorithms in artificial neural networks: a comparative empirical study on social data. Math Comp Appl. 2016.
  • 73. Pearce S, Box G, Hunter WG, Hunter JS. Statistics for experimenters: an introduction to design, data analysis and model building. New York: Wiley; 1978. p. 165.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c94441f-6f1a-4da7-b726-76ef7d26c05a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.