PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Microstructure, Electrical and Mechanical Properties of Hot Pressing Cr-50 Mass% Ni Alloys Fabricated by Addition of Various Ratios of Nanosized Ni Powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, nanosized Ni (nNi) powders of 50 nm are mixed with Cr and Ni submicron-powders (600 nm) to fabricate Cr-50 mass% Ni alloys by vacuum hot pressing. In order to evaluate the influence of the nanosized Ni powders, different amounts of nanosized Ni powders are added to produce the Cr-(50-x) mass% Ni-x mass% nNi alloys (x = 0, 10, 20, and 30). The hot pressing was maintained at 1275°C, 48 MPa for 1 h. The microstructure evaluation, mechanical, and electrical properties were performed. The results reveal that mechanical and electrical properties are enhanced when increasing the nNi addition. The Cr-20 mass% ­Ni-30 mass% nNi presents the highest relative density of 96.53% and the electrical conductivity of 2.18×104 Scm-1, moreover, the hardness and transverse rupture strength values increase to 76.1 HRA and 1217 MPa, respectively. Moreover, a more homogeneous microstructure and a decrease in the mean grain size to 3.15 μm are acquired. Significantly, this fabrication procedure (adding 30 mass% nanosized nickel powders) results in the optimal microstructure, electrical and mechanical properties of submicron-structured Cr-(50-x) mass% Ni-x mass% nNi alloys.
Twórcy
  • Tohoku University, Department of Metallurgy, Materials Science and Materials Processing, 6-6-04 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
  • National Taiwan University of Science and Technology, Department of Chemical Engineering, Taipei 10607, Taiwan, ROC
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
Bibliografia
  • [1] L.L. Shaw, H. Luo, Y. Zhong, Mater. Sci. Eng. A 537, 39-48 (2012).
  • [2] M. Khajepour, S. Sharafi, Powder Technol. 232, 124-133 (2012).
  • [3] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Int. J. Refract. Met. Hard Mater. 27, 288 (2009).
  • [4] X. Wang, Z.Z. Fang, H.Y. Sohn, Int. J. Refract. Met. Hard Mater. 26, 232-241 (2008).
  • [5] Y. Harada, M. Ohmori, F. Yoshida, R. Nowak, Mater. Lett. 57, 1142-1150 (2003).
  • [6] S.H. Chang, J.C. Chen, K.T. Huang, J.K. Chen, Mater. Trans. 54, 1034-1039 (2013).
  • [7] V. Petley, S. Sathishkumar, K.H. Thulasi Raman, G. Mohan Rao, U. Chandrasekhar, Mater. Res. Bull. 66, 59-64 (2015).
  • [8] M. Danışman, N. Cansever, J. Alloys Compd. 493, 649-563 (2010).
  • [9] S.H. Chang, P.Y. Chang, Mater. Sci. Eng. A 606, 150-156 (2014).
  • [10] S.H. Chang, S.L. Chen, J. Alloys Compd. 585, 407-413 (2014).
  • [11] Z.H. Qiao, X.F. Ma, W. Zhao, H.G. Tang, B. Zhao, J. Alloy. Compd. 462, 416-420 (2008).
  • [12] C. Liang, S.H. Chang, J.R. Huang, K.T. Huang, S.T. Lin, Mater. Trans. 56, 1127-1132 (2015).
  • [13] W.D. Callister JR, D.G. Rethwisch, Materials Science and Engineering, 9th ed., pp. 681-683, John Wiley and Sons Pte Ltd., (2014).
  • [14] S.H. Chang, S.H. Chen, K.T. Huang, Mater. Trans. 54, 1857-1862 (2013).
  • [15] S.H. Chang, S.H. Chen, K.T. Huang, Mater. Trans. 53, 1689-1694 (2012).
  • [16] S.H. Chang, M.C. Chang, K.T. Huang, J. Alloys Compd. 649, 89-95 (2015).
Uwagi
1. This research is supported by the ASSAB STEELS TAIWAN CO., LTD. The authors would like to express their appreciations for Dr. Harvard Chen.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c92b5ab-ba99-4334-96d3-36819c3d6a23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.