PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A single upper limb pose estimation method based on the improved stacked hourglass network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, most high-accuracy single-person pose estimation methods have high computational complexity and insufficient real-time performance due to the complex structure of the network model. However, a single-person pose estimation method with high real-time performance also needs to improve its accuracy due to the simple structure of the network model. It is currently difficult to achieve both high accuracy and real-time performance in single-person pose estimation. For use in human–machine cooperative operations, this paper proposes a single-person upper limb pose estimation method based on an end-to-end approach for accurate and real-time limb pose estimation. Using the stacked hourglass network model, a single-person upper limb skeleton key point detection model is designed. A deconvolution layer is employed to replace the up-sampling operation of the hourglass module in the original model, solving the problem of rough feature maps. Integral regression is used to calculate the position coordinates of key points of the skeleton, reducing quantization errors and calculations. Experiments show that the developed single-person upper limb skeleton key point detection model achieves high accuracy and that the pose estimation method based on the end-to-end approach provides high accuracy and real-time performance.
Rocznik
Strony
123--133
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
autor
  • Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
autor
  • Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
autor
  • Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
Bibliografia
  • [1] Andriluka, M., Pishchulin, L., Gehler, P.V. and Schiele, B. (2014). 2D human pose estimation: New benchmark and state of the art analysis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, pp. 3686–3693.
  • [2] Artacho, B. and Savakis, A. (2020). Unipose: Unified human pose estimation in single images and videos, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR Virtual), pp. 7035–7044, (online).
  • [3] Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L. and Wang, X. (2017). Multi-context attention for human pose estimation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 5669–5678.
  • [4] Fan, X., Zheng, K., Lin, Y. and Wang, S. (2015). Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 1347–1355.
  • [5] Hu, H., Liao, Z. and Xiao, X.C. (2019). Action recognition using multiple pooling strategies of CNN features, Neural Processing Letters 50(1): 379–396.
  • [6] Hu, P. and Ramanan, D. (2015). Bottom-up and top-down reasoning with convolutional latent-variable models, ArXiv: abs/1507.05699.
  • [7] Li, C., Yung, N.H.C., Sun, X. and Lam, E.Y. (2017). Human arm pose modeling with learned features using joint convolutional neural network, Machine Vision and Applications 28(1–2): 1–14.
  • [8] Lifshitz, I., Fetaya, E. and Ullman, S. (2016). Human pose estimation using deep consensus voting, European Conference on Computer Vision (ECCV), Amsterdam, Holland, pp. 246–260.
  • [9] Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 3431–3440.
  • [10] Newell, A., Yang, K. and Deng, J. (2016). Stacked hourglass networks for human pose estimation, European Conference on Computer Vision (ECCV), Amsterdam, Holland, pp. 483–499.
  • [11] Ning, F., Shi, Y., Cai, M. and Xu, W. (2020). Various realization methods of machine-part classification based on deep learning, Journal of Intelligent Manufacturing 31(8): 2019–2032.
  • [12] Pfister, T., Charles, J. and Zisserman, A. (2015). Flowing ConvNets for human pose estimation in videos, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1913–1921.
  • [13] Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement, arXiv: 1804.02767.
  • [14] Sun, K., Xiao, B., Liu, D. and Wang, J. (2019). Deep high-resolution representation learning for human pose estimation, Computer Vision and Pattern Recognition (CVPR), Los Angeles, USA, pp. 5693–5703.
  • [15] Sun, X., Xiao, B., Wei, F., Liang, S. and Wei, Y. (2018). Integral human pose regression, European Conference on Computer Vision (ECCV), Munich, Germany, pp. 529–545.
  • [16] Tompson, J., Goroshin, R., Jain, A., LeCun, Y. and Bregler, C. (2015). Efficient object localization using convolutional networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 648–656.
  • [17] Toshev, A. and Szegedy, C. (2015). DeepPose: Human pose estimation via deep neural networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, pp. 1653–1660.
  • [18] Wei, S.-E., Ramakrishna, V., Kanade, T. and Sheikh, Y. (2016). Convolutional pose machines, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 4724–4732.
  • [19] Xiao, B.,Wu, H. andWei, Y. (2018). Simple baselines for human pose estimation and tracking, European Conference on Computer Vision (ECCV), Munich, Germany, pp. 466–481.
  • [20] Yang, W., Li, S., Ouyang, W., Li, H. and Wang, X. (2017). Learning feature pyramids for human pose estimation, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1281–1290.
  • [21] Yang, W., Ouyang, W., Li, H. and Wang, X. (2016). End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 3073–3082.
  • [22] Zhang, F., Zhu, X. and Ye, M. (2019). Fast human pose estimation, Compter Vision and Pattern Recognition (CVPR), Los Angeles, USA, pp. 3517–3526.
  • [23] Zhou, J., Liu, J. and Zhang, M. (2020). Curve skeleton extraction via k-nearest-neighbors based contraction, International Journal of Applied Mathematics and Computer Science 30(1): 123–132, DOI: 10.34768/amcs-2020-0010.
  • [24] Zlatanski, M., Sommer, P., Zurfluh, F., Zadeh, S.G., Faraone, A. and Perera, N. (2019). Machine perception platform for safe human-robot collaboration, 2019 IEEE SENSORS, Montreal, Canada, pp. 1–4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c91faf9-9155-45b1-8f55-7b44707da24a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.