PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Filtering strategies for smartphone emitted digital signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today's digitalized and technology-driven society, where the number of IoT devices and the volume of collected data is exponentially increasing, the use of sensor data has become a necessity in certain fields of activity. This paper presents a concise history of sensor evolution and specialization, with a focus on the sensors used for localization, particularly those present in microelectromechanical systems (MEMS) that make up inertial measurement units. The study starts with a general overview and progresses towards a more specific analysis of data sets collected from an accelerometer. In the materials and methods section, it emphasizes the imperfect nature of sensor measurements and the need to filter digital signals. Three different digital signal filtering techniques belonging to distinct filter categories are comparatively analyzed, with each technique having its own particularities, advantages and disadvantages. The analysis considers the effectiveness in reducing measurement errors, the impact of the filtering process on the original signal, the ability to highlight the underlying phenomenon, as well as the performance of the analyzed algorithms. The ultimate purpose of this article is to determine which filtration method is best suited for the signal at hand in the context of an indoor localization application.
Słowa kluczowe
Rocznik
Strony
139--156
Opis fizyczny
Bibliogr. 52 poz., fig., tab.
Twórcy
  • Bucharest University of Economic Studies, Faculty of Cybernetics, Statistics and Economic Informatics, Department of Economic Informatics, Romania
  • Bucharest University of Economic Studies, Faculty of Cybernetics, Statistics and Economic Informatics, Department of Economic Informatics, Romania
Bibliografia
  • [1] Acharya, D., Rani, A., Agarwal, S., & Singh, V. (2016). Application of adaptive Savitzky–Golay filter for EEG signal processing. Perspectives in science, 8, 677-679. https://doi.org/10.1016/j.pisc.2016.06.056
  • [2] Ahlawat, J., Sharma, M., & Pundir, C. S. (2024). Advances in xanthine biosensors and sensors: A review. Enzyme and microbial technology, 174, 110377. https://doi.org/10.1016/j.enzmictec.2023.110377
  • [3] Ahn, H. S., & Ko, K. H. (2009). Simple pedestrian localization algorithms based on distributed wireless sensor networks. IEEE Transactions on Industrial Electronics, 56, 4296-4302. https://doi.org/10.1109/TIE.2009.2017097
  • [4] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. https://doi.org/10.1109/COMST.2015.2444095
  • [5] Anwar, A., Anwar, A., Moukahal, L., & Zulkernine, M. (2023). Security assessment of in-vehicle communication protocols. Vehicular Communications, 44, 100639. https://doi.org/10.1016/j.vehcom.2023.100639
  • [6] Awal, M. A., Mostafa, S. S., & Ahmad, M. (2011). Performance analysis of Savitzky-Golay smoothing filter using ECG signal. International Journal of Computer and Information Technology, 1(02), 110126.
  • [7] Azam, S., Dall’Ora, N., Fraccaroli, E., Gillon, R., & Fummi, F. (2023). Analog defect injection and fault simulation techniques: A systematic literature review. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 43(1), 16-29. https://doi.org/10.1109/TCAD.2023.3298698
  • [8] Azami, H., Mohammadi, K., & Bozorgtabar, B. (2012). An improved signal segmentation using moving average and Savitzky-Golay filter. Journal of Signal and Information Processing, 03, 39-44. https://doi.org/10.4236/JSIP.2012.31006
  • [9] Benoussaad, M., Sijobert, B., Mombaur, K. D., & Azevedo Coste, C. (2015). Robust foot clearance estimation based on the integration of Foot-Mounted IMU acceleration data. Sensors, 16(1), 12. https://doi.org/10.3390/s16010012
  • [10] Bentler, R., & Chiou, L. K. (2006). Digital noise reduction: An overview. Trends in amplification, 10(2), 67-82. https://doi.org/10.1177/1084713806289514
  • [11] Bloecher, H. L., Dickmann, J., & Andres, M. (2009). Automotive active safety & comfort functions using radar. 2009 IEEE International Conference on Ultra-Wideband (pp. 490-494). IEEE. https://doi.org/10.1109/ICUWB.2009.5288790
  • [12] Chen, Z., Sun, Z., & Wang, W. (2011). Design and implementation of Kalman filter. IET International Conference on Communication Technology and Application (ICCTA 2011) (pp. 901-904). https://doi.org/10.1049/cp.2011.0800
  • [13] Deep, A., Mittal, M., & Mittal, V. (2018). Application of Kalman filter in GPS position estimation. 2018 IEEE 8th Power India International Conference (PIICON) (pp. 1-5). IEEE. https://doi.org/10.1109/POWERI.2018.8704368
  • [14] Dhanalakshmi, S. B., Joseph, C., Rajeswari, A., Poongothai, M., & Rozario, J. (2023). Enhancing indoor navigation: bluetooth Beacon-Based localization systems. 2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 133-138). IEEE. https://doi.org/10.1109/ICECA58529.2023.10395279
  • [15] Dinakar, J. R., & Vagdevi, S. (2017). A study on storage mechanism for heterogeneous sensor data on big data paradigm. 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT) (pp. 342-345). IEEE. https:/doi.org/10.1109/ICEECCOT.2017.8284525
  • [16] Ellis, C. A., & Parbery, S. A. (2005). Is smarter better? A comparison of adaptive, and simple moving average trading strategies. Research in International Business and Finance, 19(3), 399-411. https://doi.org/10.1016/j.ribaf.2004.12.009
  • [17] Farhad, A., Kwon, G. R., & Pyun, J. Y. (2023). Mobility adaptive data rate based on Kalman filter for LoRa-Empowered IoT applications. 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC) (pp. 321-324). IEEE. https://doi.org/10.1109/CCNC51644.2023.10060330
  • [18] Gujarathi, T., & Bhole, K. (2019). Gait analysis using imu sensor. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCCNT45670.2019.8944545
  • [19] Hansun, S., & Kristanda, M. B. (2017). Performance analysis of conventional moving average methods in forex forecasting. 2017 International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS) (pp. 11-17). IEEE. https://doi.org/10.1109/ICON-SONICS.2017.8267814
  • [20] Hasan, K., Meraj, S. T., Othman, M. M., Lipu, M. H., Hannan, M. A., & Muttaqi, K. M. (2022). Savitzky–Golay Filter-Based PLL: Modeling and performance validation. IEEE Transactions on Instrumentation and Measurement, 71, 1-6. https://doi.org/10.1109/TIM.2022.3196946
  • [21] Hidayat, A. A., Arief, Z., & Happyanto, D. C. (2015). Mobile application with simple moving average filtering for monitoring finger muscles therapy of post-stroke people. 2015 International Electronics Symposium (IES) (pp. 1-6). IEEE. https://doi.org/10.1109/ELECSYM.2015.7380803
  • [22] Johnston, F. R., Boyland, J. E., Meadows, M., & Shale, E. (1999). Some properties of a simple moving average when applied to forecasting a time series. Journal of the Operational Research Society, 50(12), 1267-1271. https://doi.org/10.2307/3010636
  • [23] Karpinski, R., Krakowski, P., Jonak, J., Machirowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagonostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40
  • [24] Krishnan, S. R., & Seelamantula, C. S. (2012). On the selection of optimum Savitzky-Golay filters. IEEE transactions on signal processing, 61(2), 380-391. https://doi.org/10.1109/TSP.2012.2225055
  • [25] Kwon, J., & Park, D. (2020). Implementation of computation-efficient sensor network for Kalman filter-based intelligent position-aware application. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 565-568). IEEE. https://doi.org/10.1109/ICAIIC48513.2020.9065098
  • [26] Li, Q., Li, R., Ji, K., & Dai, W. (2015). Kalman filter and its application. 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS) (pp. 74-77). IEEE. https://doi.org/10.1109/ICINIS.2015.35
  • [27] Li, Q., Rajagopalan, C., & Clifford, G. D. (2020). Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Transactions on Biomedical Engineering, 61(6), 1607-1613. https://doi.org/10.1109/TBME.2013.2275000
  • [28] Liu, Y., Dang, B., Li, Y., Lin, H., & Ma, H. (2016). Applications of Savitzky-Golay filter for seismic random noise reduction. Acta Geophysica, 64, 101-124. https://doi.org/10.1515/acgeo-2015-0062
  • [29] Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. J. (2017). Smart homes for elderly healthcare—Recent advances and research challenges. Sensors, 17(11), 2496. https://doi.org/10.3390/s17112496
  • [30] Meinhold, R. J., & Singpurwalla, N. D. (1983). Understanding the Kalman filter. The American Statistician, 37(2), 123-127. https://doi.org/10.2307/2685871
  • [31] Mohamed, A. M., Fouad, F. H., Raouf Fayek, G., El Sayed, K. M., Ahmed, M. N., Mahmoud, R. Z., & El Nashar, R. M. (2023). Recent advances in electrochemical sensors based on nanomaterials for detection of red dyes in food products: A review. Food chemistry, 435, 137656. https://doi.org/10.1016/j.foodchem.2023.137656
  • [32] Olivares, A., Olivares, G., Gorriz, J. M., & Ramirez, J. (2009). High-efficiency low-cost accelerometer-aided gyroscope calibration. 2009 International Conference on Test and Measurement (pp. 354-360). IEEE. https://doi.org/10.1109/ICTM.2009.5412920
  • [33] Oteafy, S. M. A., & Hassanein, H. S. (2018). Leveraging Tactile Internet Cognizance and Operation via IoT and Edge Technologies. IEEE, 107(2), 364-375. https://doi.org/10.1109/JPROC.2018.2873577
  • [34] Poulose, A., Kim, J., & Han, D. S. (2019). Indoor localization with smartphones: Magnetometer calibration. 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-3). IEEE. https://doi.org/10.1109/ICCE.2019.8661986
  • [35] Promrit, P., Chokchaitam, S., & Ikura, M. (2018). In-vehicle MEMS IMU calibration using accelerometer. 2018 IEEE 5th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA) (pp. 1-3). IEEE. https://doi.org/10.1109/ICSIMA.2018.8688778
  • [36] Purnama, S. I., Afandi, M. A., & Purba, E. V. (2022). Global Positioning System Data Processing Improvement for Blind Tracker Device Based Using Moving Average Filter. In T. Triwiyanto, A. Rizal, & W. Caesarendra (Eds.), Proceedings of the 2nd International Conference on Electronics, Biomedical Engineering, and Health Informatics (pp. 177–188). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1804-9_14
  • [37] Quan, Q., & Cai, K. Y. (2012). Time-domain analysis of the Savitzky–Golay filters. Digital Signal Processing, 22(2), 238-245. https://doi.org/10.1016/j.dsp.2011.11.004
  • [38] Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University - Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
  • [39] Schafer, R. W. (2011). On the frequency-domain properties of Savitzky-Golay filters. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE) (pp. 54-59). IEEE. https://doi.org/10.1109/DSP-SPE.2011.5739186
  • [40] Schmid, M., Rath, D., & Diebold, U. (2022). Why and how Savitzky–Golay filters should be replaced. ACS Measurement Science Au, 2(2), 185-196. https://doi.org/10.1021/acsmeasuresciau.1c00054
  • [41] Schulze, H. G., Foist, R. B., Ivanov, A., & Turner, R. F. (2008). Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky–Golay filter. Applied spectroscopy, 62(10), 1160-1166. https://doi.org/10.1366/000370208786049079
  • [42] Sung, F. Y., Fang, S. H., & Chien, Y. R. (2014). An experimental study of MEMS-based magnetometers on Android mobile phones. 2014 IEEE International Conference on Consumer Electronics – Taiwan (pp. 227-228). IEEE. https://doi.org/10.1109/ICCE-TW.2014.6904071
  • [43] Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Academic Press.
  • [44] Thinh, D. T., Quan, N. B. H., & Maneetien, N. (2018). Implementation of moving average filter on STM32F4 for vibration sensor application. 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) (pp. 627-631). IEEE. https://doi.org/10.1109/GTSD.2018.8595630
  • [45] Truzman, S., Revach, G., & Klein, I. (2021). On the influence of home appliances on the smartphone’s inertial sensors. 2021 IEEE Sensors, 1-4. IEEE. https:/doi.org/10.1109/SENSORS47087.2021.9639739
  • [46] Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction. John Wiley & Sons.
  • [47] Welch, G. F. (2014). Kalman Filter. In K. Ikeuchi (Ed.), Computer Vision. Springer US. https://doi.org/10.1007/978-0-387-31439-6_716
  • [48] Xie, Q., Wang, Q., Cao, N., Gao, S., Liang, G., Zhang, T., Chen, Y., Zhai, Y., & Li, N. (2017). A survey of wireless sensor technique applications for medical mare. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) (pp. 412-415). IEEE. https://doi.org/10.1109/CyberC.2017.87
  • [49] Yadav, L., Yadav, P., Laddha, H., Sharma, M., Sharma, P., Agarwal, M., & Gupta, R. (2024). Smartphone based CN– ion sensing in electroplating wastewater and food samples in a simple, economical and rapid manner. Inorganic Chemistry Communications, 161, 112083. https://doi.org/doi:10.1016/j.inoche.2024.112083
  • [50] Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22-32. https://doi.org/10.1109/JIOT.2014.2306328
  • [51] Zhang, P., Gu, J., Milios, E. E., & Huynh, P. (2005). Navigation with IMU/GPS/digital compass with unscented Kalman filter. IEEE International Conference Mechatronics and Automation, 2005 (pp. 1497-1502). IEEE. https://doi.org/10.1109/ICMA.2005.1626777
  • [52] Zhang, X., & Yu, W. (2022). Research on the application of Kalman Filter algorithm in aircraft trajectory analysis. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP) (pp. 196-199). IEEE. https://doi.org/10.1109/ICSP54964.2022.9778746
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c908f62-2d9e-492d-8c3a-1a737c6003af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.