Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article aims to study the natural frequency of defective graphene sheets since the existence of cut-outs in plates may be essential on the basis of their desired functionality. A combination of the Aifantis theory and Kirchhoff thin plate hypothesis is used to derive governing equations of motion. The Ritz method is employed to derive discrete equations of motion. The molecular structural mechanics method is also employed to specify the effective length scale parameter. In the ‘numerical results’ Section, the effects of different parameters such as boundary conditions and diameter of the hole-to-side length ratio on the fundamental frequency of graphene sheets are studied.
Czasopismo
Rocznik
Tom
Strony
823--838
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
Bibliografia
- 1. Aifantis E.C., 1992, On the role of gradients in the localization of deformation and fracture, International Journal of Engineering Science, 30, 1279-1299
- 2. Aifantis E.C., 2011, On the gradient approach-relation to Eringen’s nonlocal theory, International Journal of Engineering Science, 49, 1367-1377
- 3. Akgoz B., Civalek O. , 2012, Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Materials and Design, 42, 167-171
- 4. Akgoz B., Civalek O. , 2014, A new trigonometric beam model for buckling of strain gradient microbeams, International Journal of Mechanical Sciences, 81, 88-94
- 5. Akgoz B., Civalek O. , 2015, A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory, Acta Mechanica, 226, 2277-2294
- 6. Aksu G., Ali R., 1976, Determination of dynamic characteristics of rectangular plates with cutouts using a finite difference formulation, Journal of Sound and Vibration, 44, 147-158
- 7. Ali R., Atwal S.J., 1980, Prediction of natural frequencies of vibration of rectangular plates with rectangular cutouts, Composite Structures, 12, 819-823
- 8. Altan B., Aifantis E.C., 1997, On some aspects in the special theory of gradient elasticity, Journal of Mechanical Behavior of Material, 8, 231-282
- 9. Ansari R., Gholami R., Faghih Shojaei M., Mohammadi V., Sahmani S., 2013, Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composite Structures, 100, 385-397
- 10. Ansari R., Gholami R., Sahmani S., 2011, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composite Structures, 94, 221-228
- 11. Ansari R., Sahmani S., Arash B., 2010, Nonlocal plate model for free vibration of single-layered graphene sheets, Physics Letters A, 375, 53-62
- 12. Ashoori Movassagh A., Mahmoodi A.M.J., 2013, A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory, European Journal of Mechanics A/Solids, 40, 50-59
- 13. Askes H., Aifantis E.C., 2009, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Physical Review, B80, 195412
- 14. Askes H., Aifantis E.C., 2011, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, 48, 1962-1990
- 15. Binglei W., Shenghua H., Junfeng Z., Shenjie Z., 2016, Reconsiderations on boundary conditions of Kirchhoff micro-plate model based on a strain gradient elasticity theory, Applied Mathematical Modelling, 40, 7303-7317
- 16. Binglei W., Shenjie Z., Junfeng Z., Xi C., 2011, A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, European Journal of Mechanics A/Solids, 30, 517-524
- 17. Ebrahimi F., Barati M.R., Dabbagh A., 2016, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, 107, 169-182
- 18. Farajpour A., Mohammadi M., Shahidi A.R., Mahzoon M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E, 43, 1820-1825
- 19. Farajpour A., Shahidi A.R., Mohammadi M., Mahzoon M., 2012, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, 94, 1605-1615
- 20. Gholami R., Darvizeh A., Ansari R., Sadeghi F., 2016, Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin’s strain gradient elasticity theory, European Journal of Mechanics A/Solids, 58, 76-88
- 21. Gitman I.M., Askes H., Aifantis E.C., 2005, The representative volume size in static and dynamic micro-macro transitions, International Journal of Fracture, 135, L3-L9
- 22. Gupta S.S., Batra R.C., 2010, Elastic properties and frequencies of free vibrations of single-layered graphene sheets, Journal of Computational and Theoretical Nanoscience, 10, 2151-2164
- 23. Hashemnia K., Farid M., Vatankhah R., 2009, Vibrational analysis of carbon nanotubes and graphene sheets using molecular structural mechanics approach, Computational Materials Science, 47, 79-85
- 24. Hu N., Nunoya K., Pan D., Okabe T., Fukunaga H., 2007, Prediction of buckling characteristics of carbon nanotubes, International Journal of Solids and Structures, 44, 6535-6550
- 25. Jomehzadeh E., Saidi A.R., Jomehzadeh Z., Bonaccorso F., Palermo V., Galiotis C., Pugno N.M., 2015, Nonlinear subharmonic oscillation of orthotropic graphene-matrix composite, Computational Materials Science, 99, 164-172
- 26. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 1477-1508
- 27. Lam K.Y., Hung K.C., Chow S.T., 1989, Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method, Applied Acoustics, 28, 49-60
- 28. Lebedeva I.V., Knizhnik A.A., Popov A.M., Lozovik Yu. E., Potapkin B.V., 2012, Modeling of graphene-based NEMS, Physica E, 44, 949-954
- 29. Li C., Chou T.-W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 2487-2499
- 30. Li L., Hu Y., 2016, Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory, Computational Materials Science, 112, 282-288
- 31. Liew K.M., Kitipornchai S., Leung A.Y.T., Lim C.W., 2003, Analysis of the free vibration of rectangular plates with central cut-outs using the discrete Ritz method, International Journal of Mechanical Sciences, 45, 941-959
- 32. Malekzadeh P., Bahranifard F., Ziaee S., 2013, Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev-Ritz method, Composite Structures, 105, 1-13
- 33. Metrikine A.V., Askes H., 2002, One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation, European Journal of Mechanics A/Solids, 21, 555-572
- 34. Metrikine A.V., Askes H., 2006, An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice, Philosophical Magazine, 86, 3259-3286
- 35. Mindlin R., 1964, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 52-78
- 36. Mindlin R.D., Tiersten H.F., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415-448
- 37. Mohammadi M., Farajpour A., Goodarzi, Dinari F., 2014, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, 11, 659-682
- 38. Murmu T., Pradhana S.C., 2009, Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory, Journal of Applied Physics, 105, 064319
- 39. Rahmani O., Pedram O., 2014, Analysis and modeling the size effect on vibration of functionally graded nano-beams based on nonlocal Timoshenko beam theory, International Journal of Engineering Science, 77, 55-70
- 40. Rajamani A., Prabhakaran R., 1977, Dynamic response of composite plates with cut-outs. Part 1: Simply-supported plates, Journal of Sound and Vibration, 54, 549-564
- 41. Reddy J.N., 1999, Theory and Analysis of Elastic Plates, Taylor and Francis, USA
- 42. Reddy J.N., 2011, Microstructure-dependent couple stress theories of functionally graded beams, Journal of Mechanics and Physics of Solids, 59, 2382-2399
- 43. Sadeghi M., Naghdabadi R., 2010, Nonlinear vibrational analysis of single-layered graphene sheets, Nanotechnology, 21, 105705-105710
- 44. Sakhaee-pour A., Ahmadian M.T., Naghdabadi R., 2008, Vibrational analysis of singlelayered graphene sheets, Nanotechnology, 19, 85702-85707
- 45. Scarpa F., Adhikari S., Phani A.S., 2009, Effective elastic mechanical properties of single layer graphene sheets, Nanothecnology, 20, 065709
- 46. Shen L., Shen H.-S., Zhang C.-L., 2010, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Computational Materials Science, 48, 680-685
- 47. S¸ims¸ek M., 2016, Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, International Journal of Engineering Science, 105, 12-27
- 48. Tham L.G., Chan A.H.C., Cheung Y.K., 1986, Free vibration and buckling analysis of plates by negative stiffness method, Composite Structures, 22, 687-692
- 49. Wang C.G., Lan L., Liu Y.P., Tan H.F., He X.D., 2013, Vibration characteristics of wrinkled single-layered graphene sheets, International Journal of Solids and Structures, 50, 1812-1823
- 50. Yang F., Chong A.C., Lam D.C.C., Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structurs, 39, 2731-2743
- 51. Zandiatashbar A., Lee G.-H., An S.J., Lee S., Mathew N., Terrones M., Hayashi T., Picu C.R., Hone J., Koratkar N., 2014, Effect of defects on the intrinsic strength and stiffness of graphene, Nature Communications, 5, 3186, DOI: 10.1038/ncomms4186
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c8d6715-38c6-48ed-93b6-97383a68e566