PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calm water performance of hard-chine vessels in semi-planing and planing regimes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current paper, a mathematical model is developed for performance prediction of hard-chin boats which can be used in both semi-planing and planing regimes. The proposed model bases on the 2D+T theory and implements pressure distributions over the length of the hull in order to compute the forces. To determine the forces in the semiplaning range, a function is proposed for the non-dimensional length at which the transom effect appears. Three drag components, which are: frictional drag, induced drag, and spray drag, are considered in the computations performed using an iterative method to satisfy two equilibrium equations. The validity of the proposed method is verified by comparing the predicted trim angle and resistance against the available experimental data. Based on this comparison, it is observed that the proposed method reveals satisfying accuracy in both semi-planing and planing regimes. The method is then used to study variation of hydrodynamic and hydrostatic forces as the hull makes a transition from the semi-planing regime to the planing regime. In addition, different components of the resistance are analyzed.
Rocznik
Tom
Strony
23--45
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
autor
  • Amirkabir University of Technology 424 Hafez Ave. 3314 Tehran Islamic Republic of Iran
autor
  • Amirkabir University of Technology 424 Hafez Ave. 3314 Tehran Islamic Republic of Iran
  • Persian Gulf University, Islamic Republic of Iran
Bibliografia
  • 1. Abraham, J., Gorman, J., Reseghetti, F., et al., Modeling and numerical simulation of the forces acting on a sphere during early-water entry, Ocean Engineering, Vol. 76, 1-9, 2014.
  • 2. Akers R.H.: Dynamic Analysis of Planing Hulls in the Vertical Plane, Proceedings of the Society of Naval Architects and Marine Engineers, New England Section, 1999.
  • 3. Akers R.H.: 2014. Advances in time-domain simulation of planing boats. In: Proceedings of the Fourth Chesapeake Powerboat Symposium, Annapolis, MD, USA, 2014.
  • 4. Algarin R., Tascon, O.: Hydrodynamic Modeling of Planing Boats with Asymmetric and Steady Condition, Proceedings of the 9th Conference on High Speed Marine Vehicles, Naples, Italy, 2011.
  • 5. Algarin R., Tascon, O.: Analysis of Dynamic Stability of Planing Craft on the Vertical Plane, Ship Science and Technology, Vol. 8, No. 15, 2014.
  • 6. Bertorello C, Olivero L.: Hydrodynamic Resistance Assessment of non-monohedral planing hull forms based on Savitsky’s methodology, Australian Journal of Mechanical Engineering, Vol. 4, No. 2, 209-204, 2007.
  • 7. Brizzolara S, Sera F. Accuracy of CFD codes in the Prediction of planing surfaces hydrodynamic characteristics. In: Proceedings of the 2nd International Conference on marine Research and Transportation, 2007.
  • 8. Brizzolara S, Villa D., CFD simulation of planing hulls. In: Proceedings of the 7th International conference on HighPerformance Marine Vehicles, Melbourne, Florida, USA, 2010.
  • 9. Brogila R., Iafrati A.: Hydrodynamic of planing hulls in asymmetric conditions. In: 28th Symposium on Naval Hydrodynamics Pasadena, California, 2010.
  • 10. Facci, A.L., Panciroli, R., Ubertini, S., Porfiri, M.,: Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets, Journal of Fluids and Structures, Vol. 55, 484-500, 2015a.
  • 11. Facci, A.L., Porfiri, M., Ubertini, S.: Three-dimensional water entry of a solid body: A computational study, Journal of Fluids and Structures, Vol. 66, 36-53, 2016.
  • 12. Fairelie-Clarke, AC., Tvetnies T.: Momentum and Gravity Effects During the Constant Velocity Water Entry of WedgeShaped Sections, Ocean Engineering, Vol. 35, 2008.
  • 13. Farsi, M., Ghadimi, P.: Finding the best combination of numerical schemes for 2-D SPH simulation of wedge water entry for a wide range of deadrise angles, International Journal of Naval Architecture and Ocean Engineering, Vol. 6, No. 3, 638-651, 2014a.
  • 14. Farsi, M., Ghadimi, P., Effect of flat deck on catamaran water entry through smoothed particle hydrodynamics, Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, Vol. 230, No. 2, 267-280, 2014b.
  • 15. Farsi, M., Ghadimi, P.: Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 37, No. 3, 821-835, 2015.
  • 16. Feizi Chekab, M.A., Ghadimi, P., Farsi, M.: Investigation of three-dimensionality effects of aspect ratio on water impact of 3D objects using smoothed particle hydrodynamics method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 38, No. 7, 1987-1997, 2016.
  • 17. Fridsma G.: A Systematic Study of the Rough-Water Performance of Planing Boats (PART I), Davidson Laboratory, Report No. 1275, 1969.
  • 18. Garme K.: Improved Time Domain Simulation of Planing Hulls in Waves by Correction of Near-Transom Lift, International Journal of Shipbuilding Progress, Vol. 52, No. 3, 2005.
  • 19. Garme K., Rosen A.: Time domain simulations and full-scale trials on planing crafts in waves, International Shipbuilding progress, Vol. 50, No. 3, 177-208, 2003.
  • 20. Garo R., Datla R., Imas L.: Numerical simulation of planing hull hydrodynamics. In: Proceedings of the Third Chesapeake Powerboat Symposium, Annapolis, MD, USA, 2012.
  • 21. Ghadimi, P., Saadatkhah, A., Dashtimanesh, A.: Analytical solution of wedge water entry by using Schwartz-Christoffel conformal mapping, International Journal of Modeling, Simulation, and Scientific Computing, Vol. 2, No. 3, 337-354, 2011.
  • 22. Ghadimi P., Dashtimanesh A., Djeddi S.R.: Study of water entry of circular cylinder by using analytical and numerical solutions, Journal of Brazilian Society of Mechanical Sciences and Engineering, Vol. 34, No. 3, 225-232, 2012.
  • 23. Ghadimi, P., Feizi Chekab, M.A., Dashtimanesh, A.: A numerical investigation of the water impact of an arbitrary bow section, ISH Journal of Hydraulic Engineering, Vol. 19, No. 3, 186-195, 2013.
  • 24. Ghadimi, P., Feizi Chekab, M.A., Dashtimanesh, A.: Numerical simulation of water entry of different arbitrary bow sections, Journal of Naval Architecture and Marine Engineering, Vol. 11, No. 2, 117-129, 2014a.
  • 25. Ghadimi P., Tavakoli S, Dashtimanesh A., Pirooz A.: Developing a computer program for detailed study of planing hull’s spray based on Morabito’s approach. Journal of Marine Science and Application. Vol. 13, No. 4, 402-415. 2014b.
  • 26. Ghadimi P., Tavakoli S., Feizi Chakab M. A., Dashtimanesh A.: Introducing a particular mathematical model for predicting the resistance and performance of prismatic planing hulls in calm water by means of total pressure distribution, Journal of Naval Architecture and Marine Engineering, Vol. 12, No. 2, 73-94, 2015.
  • 27. Ghadimi P., Tavakoli S., Dashtimanesh A. Zamanian R.: Steady performance prediction of a heeled planing boat in calm water using asymmetric 2D+T model, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, Published Online: 2016a. DOI: 10.1177/1475090216638680.
  • 28. Ghadimi P, Tavakoli S, Dashtimanesh A.: Coupled heave and pitch motions of planing hulls at non-zero heel angle. Applied Ocean Research, Vol. 59, 286-303, 2016b.
  • 29. Ghadimi P., Tavakoli S., Dashtimanesh A.: An analytical procedure for time domain simulation of roll motion of the warped planing hulls. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(4), 600-615, 2016c.
  • 30. Ghadimi P, Tavakoli S, Dashtimanesh A. A non-linear mathematical model for coupled heave, pitch and roll motions of a high-speed planing hull, Journal of Engineering Mathematics. Published Online, 2016d. 10.1007/s10665-016-9878-2.10.1007/s10665-016-9878-2.
  • 31. Haase H., Soproni J.P., Abdel-Maksoud M.: Numerical analysis of a planing boat in head waves using 2D+T method. Ship Technology Research, 62(3), 131-139, 2015.
  • 32. ITTC: Report of Resistance Committee, 8th International Towing Tank, Madrid, Spain, 1957. 33. Conference, Venice, 2002.
  • 34. Jiang Y., Zou, J., Hu, A., Yang J.; Analysis of tunnel hydrodynamic characteristics for planing trimaran by model test and numerical simulations, Ocean Engineering, Vol. 13, 101-110, 2016.
  • 35. Judge C., Troesch A., Perlin M.: Initial water Impact of a wedge at Vertical and Oblique Angles, Journal of Engineering Mathematics, Vol. 48, 2004.
  • 36. Kanyoo P., Taunton D., Blake J.I.: Development and optimization of mathematical model of high speed planing hulls. In: Proceedings of the 13th International Conference on Fast Sea Transportation (FAST 2015), DC, USA, 2015.
  • 37. Katayama T., Fujimoto M., Ikeda Y.: A study in transverse stability loss of planing craft at super high forward speed. In: Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janerio, Brazil, 2006.
  • 38. Korobkin A.A.: A linearized model of water exit. Journal of Fluid Mechanics, 737, 368-386, 2013.
  • 39. Korobkin A.A., Melenica S.: Modified Logvinovic model for hydrodynamic loads on asymmetric contours entering water. In: Proceedings of the 20th International Workshop on Water Waves and Floating Bodies, Oslo, Norway, 2005.
  • 40. Krovin-Kroukovsky B.V., Savitsky D., William L.: Wave contours in the wake of a 20° deadrise planing surface. Davidson Laboratory, Report No. 337, 1949.
  • 41. Kim D.J., Rhee K.P., You Y.J.: Theoretical Prediction of Running Attitudes of a Semi-Displacement Round Bilge Vessel at High Speed, Applied Ocean Research, Vol. 42, 2013.
  • 42. Maki K.J., Lee D., Troesch AW., Vlahopoulos N.: Hydroelastic impact of a wedge-shaped body. Ocean Engineering, Vol. 38, 621-629.
  • 43. Martin M.: Theoretical determination of porpoising instability of high-speed planing boat. David Taylor Naval Ship Research and Development Center, Report No. 76-0068, 1976a.
  • 44. Martin M.: Theoretical prediction of motion of high-speed planing boats in waves. David Taylor Naval Ship Research and Development Center, Report No. 76-0069, 1976b.
  • 45. Mei X., Liu Y., On the water impact of general twodimensional sections, Applied Ocean Research, Vol. 21, No. 1, 21-15, 1999.
  • 46. Mercier J.A., Savitsky D.: Resistance of Transom Shear Craft in the Pre-planing Range, Davison Laboratory, Report No. 1667, Hoboken, NJ, USA, 1973.
  • 47. Metcalf B.J., Faul L., Bumiller E., Slutsky, J.: Resistance Tests of a Systematic Series of US Coast Guard of Planing Hulls, NSWCCd-50-TR-2005/063, 2005.
  • 48. Milwitzky B. 1948. A generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by V-bottom seaplanes during step-landing impact. NACA TN 1516.
  • 49. Morabito M.G.; On the spray and bottom pressures of planing surfaces, PhD Thesis, Stevens Institute of Technology, Hoboken, NJ, USA.
  • 50. Morabito, M.G.; Empirical Equations for Planing Hull Pressure Distributions. Journal of Ship Research, Vol. 58, No. 3, 2014.
  • 51. Morabito M.G.: Prediction of Planing Hull Side Forces in Yaw Using Slender Body Oblique Impact Theory, Ocean Engineering, Vol. 101, 2015.
  • 52. Mousaviraad, S.M., Wang, Z., Stern, F.: URANS studies of hydrodynamic performance and slamming loads on highspeed planing hulls in calm water and waves for deep and shallow conditions, Applied Ocean Research, Vol. 51, 222- 240, 2015.
  • 53. Nguyen, V.-T., Park, W.-G.: A free surface flow solver for complex three-dimensional water impact problems based on the VOF method, International Journal for Numerical Methods in Fluids, Vol. 82, No. 1, 3-34, 2016.
  • 54. Piro D.J., Maki K.J.: Hydroelastic analysis of bodies that enter and exit water, Journal of Fluids and Structures, Vol. 37, 134-150, 2013.
  • 55. Riccardi G, Iafrati A.: Water impact of an asymmetric floating wedge. Journal of Engineering Mathematics, Vol. 49, 19-39, 2003.
  • 56. Savitsky D.: Hydrodynamic Design of Planing Hulls, Marine Technology, Vol. 1, No. 1, 1964.
  • 57. Savitsky D.; The Effect of Bottom Warp on the Performance of Planing Hulls, Proceedings of the third SNAME Chesapeake Powerboat Symposium, Annapolis, 2011.
  • 58. Savitsky D., Brown W.: Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water, Marine Technology, Vol. 13, No. 4, 1978.
  • 59. Savitsky D., Morabito M.,: Origin and characteristics of the spray patterns generated by planing hulls, Journal of Ship Production, Vol. 27, No. 2, 63-83.
  • 60. Savitsky D., DeLorme M. F., Datla R.; Inclusion of Whisker Spray Drag in Performance Prediction Method for HighSpeed Planing Hulls, Marine Technology, Vol. 44, No. 1, 2007.
  • 61. Savander BR.: Planing hull steady hydrodynamics. PhD Thesis. University of Michigan, Ann Arbor, Michigan, USA, 1997.
  • 62. Sebastiani L., Bruzzone D., Gualeni P., et al.: A practical method for the prediction of planing craft motions in regular and irregular waves. In: Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008.
  • 63. Schachter RD, Riberio HJC.: Dynamic equilibrium evaluation for planing hulls with arbitrary geometry and variable deadrise angles – The virtual prismatic hulls method, Ocean Engineering, Vol. 115, 67-92, 2016.
  • 64. Schnitzer E, 1952. Theory and procedure for determining loads and motions in chine-immersed hydrodynamic impacts. NACA TN 2813.
  • 65. Shademani, R., Ghadimi, P.: Estimation of water entry forces, spray parameters and secondary impact of fixed width wedges at extreme angles using finite element based finite volume and volume of fluid methods, Brodogradnja, Vol. 67, No. 1, 101-124, 2016.
  • 66. Sun H., Faltinsen O.M.: Dynamic motions of planing vessels in head seas. Journal of Marine Science and Technology, Vol. 16, 168-180, 2011.
  • 67. Sun H., Faltinsen O.M.: Hydrodynamic Forces on a SemiDisplacement Ship at High Speed, Applied Ocean Research, Vol. 34, 2012.
  • 68. Tascon O.D., Troesch A.W., Maki K.J.: Numerical computation of hydrodynamic forces acing on a maneuvering planing hull via slender body theory-SBT and 2-D impact theory. In: Proceedings of the 10th International Conference on Fast Sea Transportation (FAST 2009), Athens, Greece, 2009.
  • 69. Tassin A., Korobkin AA., Cooker M.J.: On analytical models of vertical water entry of symmetric body with separation and cavity initiation. Applied Ocean Research, 48, 33-41, 2014.
  • 70. Tavakoli S., Ghadimi P., Dashtimanesh A., Sahoo P.K.: Determination of Hydrodynamic Coefficients Related to Roll Motion of High-Speed Planing Hulls, Proceedings of the 13the International Conference on Fast Sea Transportation, DC, USA, 2015.
  • 71. Radojcic D., Zgradic A., Kalajdzic M., Simic, A., Resistance Prediction for Hard-Chine Hulls in the Pre-Planing Regime, Polish Maritime Research, Vol. 21, 2014a.
  • 72. Radojcic D., Morabito M.G., Simic A. P., Zgradic A.B.: Modeling with regression analysis and artificial neural networks the resistance and trim of series 50 experiments with V-bottom motor boats, Journal of Ship Production and Design, Vol. 30, No. 4, 153-174, 2014b.
  • 73. von Karman T.: The impact on Seaplane Floats During Landing, NACA TN 321.
  • 74. Vorus SW.: A flat cylinder theory for vessel impact and steady planing, J. Ship Research, Vol. 40, No. 2, 89-106, 1996.
  • 75. Wagner H.: Phenomena Associated with Impacts and Sliding on Liquid Surface, NACA Translation of Uber Stossund Gleitvorgange an der Oberflache von Flussigkeiten. Zeitschr. Angew. Math. Mech, Vol. 12, No, 4, 1932.
  • 76. Xu L., Troesch A.W.; A study on hydrodynamic of asymmetric planing surfaces. In: Proceedings of the 5th International Conference on Fast Sea Transportation (FAST 99), Seattle, Washington, USA, 1999.
  • 77. Xu L., Troesch A.W., Peterson R.: Asymmetric hydrodynamic impact and dynamic response of vessels. Journal of Offshore Mechanics and Arctic Engineering, Vol. 121, 83-89: 1999.
  • 78. Yettou E.M., Derochers A., Champoux, Y.: A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities, Journal of Fluids and Structures, Vol. 23, 502-522, 2007.
  • 79. Zarnickh E.E.: A nonlinear mathematical model of motions of a planing boat in regular waves. David Taylor Naval Ship Research and Development Center, Report No. 78/032, 1978.
  • 80. Zarnickh E.E.: A nonlinear mathematical model of motions of a planing boat in irregular waves. David Taylor Naval Ship Research and Development Center, Report No. SPD- 0867-01, 1979.
  • 81. Zhao R., Faltinsen O. M.: Water entry of two-dimensional bodies. Journal of Fluid Mechanics, Vol. 246, 593-612, 1993.
  • 82. Zhao R., Faltinsen O. M., Haslum H.A.: A simplified nonlinear analysis of a high-speed planing craft in calm water. In: Proceedings of the 4th International Conference on Fast Sea Transportation (FAST 97), Sydney, Australia, 1997.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c8682ea-a1e2-4d35-9f6c-202b627941bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.