PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal stress comfort in a contemporary housing district in a moderate climate zone, Lublin as a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urban climate and its impact on the thermal comfort of residents are significant aspects in urban planning and the design of housing estates. The aim of this article is to investigate the temperature perception among residents in a contemporary residential area in Lublin during the hottest day, utilising an advanced computer simulation tool – the ENVI-met programme. A modern, densely built housing estate with no significant greenery was selected as a case study. General meteorological and spatial data were used for calibrating the housing estate model within the software. The housing estate model within the programme was calibrated using publicly available meteorological and spatial data, and computer simulations were conducted for Lublin's hottest day on 22 July 2022. Based on these simulations, the Universal Thermal Climate Index (UTCI) was calculated. The research results indicate that people experience moderate thermal stress in unshaded areas only at 4:00 pm, while in sunny locations, they experience strong to very strong heat stress throughout the day. This article underscores the importance of computer simulations in analysing the urban microclimate and provides insights into tools that can be used in urban planning and housing estate design processes, with the aim of creating more comfortable and environmentally friendly urban environments.
Słowa kluczowe
Rocznik
Strony
97--111
Opis fizyczny
Bibliogr. 47 poz., fig., tab.
Twórcy
  • Faculty of Civil Engineering and Architecture; Lublin University of Technology; (Poland)
autor
  • Department of Contemporary Architecture; Faculty of Civil Engineering and Architecture; Lublin University of Technology; (Poland)
  • Department of Contemporary Architecture; Faculty of Civil Engineering and Architecture; Lublin University of Technology; (Poland)
Bibliografia
  • 1. Leon D. A., “Cities, urbanization and health”, International Journal of Epidemiology, vol. 37, no. 1, (Feb. 2008), pp. 4–8. https://doi.org/10.1093/ije/dym271 Google Scholar
  • 2. Arsad F. S. et al., “The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review”, International Journal of Environmental Research and Public Health, vol. 19, no. 23, (Dec. 2022), p. 16356. https://doi.org/10.3390/ijerph192316356 Google Scholar
  • 3. “Cele Zrównoważonego Rozwoju”, Available: https://www.un.org.pl/ [Accessed: 18 June 2023] Google Scholar
  • 4. “Robyg – ESG”, Raport ESG Robyg za 2022 rok, Available: https://esg.robyg.pl/#raport-esg [Accessed: 10 June 2023] Google Scholar
  • 5. Teshnehdel S. et al., “Effect of tree cover and tree species on microclimate and pedestrian comfort in a residential district in Iran”, Building and Environment, vol. 178, (Jul. 2020), p. 106899. https://doi.org/10.1016/j.buildenv.2020.106899 Google Scholar
  • 6. Błażejczyk K. and Błażejczyk A., “Zmiana klimatu i ich wpływ na budownictwo i komfort życia mieszkańców miast, przykład Warszawy”, Przegląd Geofizyczny, vol. Z. 1-2, (2023). https://doi.org/10.32045/PG-2023-036 Google Scholar
  • 7. Noelke C. et al., “Increasing ambient temperature reduces emotional well-being”, Environmental Research, vol. 151, (Nov. 2016), pp. 124–129. https://doi.org/10.1016/j.envres.2016.06.045 Google Scholar
  • 8. Mijorski S. et al., “A hybrid approach for the assessment of outdoor thermal comfort”, Journal of Building Engineering, vol. 22, (Mar. 2019), pp. 147–153. https://doi.org/10.1016/j.jobe.2018.12.003 Google Scholar
  • 9. Ebi K. L. et al., “Extreme Weather and Climate Change: Population Health and Health System Implications”, Annual review of public health, vol. 42, (Apr. 2021), pp. 293–315. https://doi.org/10.1146/annurev-publhealth-012420-105026 Google Scholar
  • 10. Rocque R. J. et al., “Health effects of climate change: an overview of systematic reviews”, BMJ Open, vol. 11, no. 6, (Jun. 2021), p. e046333. https://doi.org/10.1136/bmjopen-2020-046333 Google Scholar
  • 11. Hajat S. et al., “Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s”, Journal of Epidemiology and Community Health, vol. 68, no. 7, (Jul. 2014), pp. 641–648. https://doi.org/10.1136/jech-2013-202449 Google Scholar
  • 12. Ziska L. H. et al., “Cities as harbingers of climate change: Common ragweed, urbanization, and public health”, Journal of Allergy and Clinical Immunology, vol. 111, no. 2, (Feb. 2003), pp. 290–295. https://doi.org/10.1067/mai.2003.53 Google Scholar
  • 13. Oke T. R., Boundary Layer Climates. London New York, 1987. Google Scholar
  • 14. Bochenek A. and Klemm K., “Wyznaczanie korytarzy przewietrzających przy użyciu metody morfometrycznej dla wybranego fragmentu miasta Łodzi”, Budownictwo i Architektura, vol. Vol. 15, no. nr 4, (2016). Google Scholar
  • 15. Kim H. H., “Urban heat island”, International Journal of Remote Sensing, vol. 13, no. 12, (Aug. 1992), pp. 2319–2336. https://doi.org/10.1080/01431169208904271 Google Scholar
  • 16. Singh P. et al., “Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate”, Sustainable Cities and Society, vol. 32, (Jul. 2017), pp. 100–114. https://doi.org/10.1016/j.scs.2017.02.018 Google Scholar
  • 17. Havenith G., “Temperature Regulation, Heat Balance and Climatic Stress”, in Extreme Weather Events and Public Health Responses, Kirch W. et al. Eds. Berlin, Heidelberg: Springer, 2005, pp. 69–80. https://doi.org/10.1007/3-540-28862-7_7 Google Scholar
  • 18. Havenith G., “Individualized model of human thermoregulation for the simulation of heat stress response”, Journal of Applied Physiology (Bethesda, Md.: 1985), vol. 90, no. 5, (May 2001), pp. 1943–1954. https://doi.org/10.1152/jappl.2001.90.5.1943 Google Scholar
  • 19. Jendritzky G. et al., “UTCI—Why another thermal index?”, International Journal of Biometeorology, vol. 56, no. 3, (May 2012), pp. 421–428. https://doi.org/10.1007/s00484-011-0513-7 Google Scholar
  • 20. Rupp R. F. et al., “A review of human thermal comfort in the built environment”, Energy and Buildings, vol. 105, (Oct. 2015), pp. 178–205. https://doi.org/10.1016/j.enbuild.2015.07.047 Google Scholar
  • 21. Kenny G. P. et al., “Heat stress in older individuals and patients with common chronic diseases”, CMAJ : Canadian Medical Association Journal, vol. 182, no. 10, (Jul. 2010), pp. 1053–1060. https://doi.org/10.1503/cmaj.081050 Google Scholar
  • 22. Blazejczyk K. et al., “Comparison of UTCI to selected thermal indices”, International Journal of Biometeorology, vol. 56, no. 3, (May 2012), pp. 515–535. https://doi.org/10.1007/s00484-011-0453-2 Google Scholar
  • 23. Jendritzky G. et al., “Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being”. Final Report COST Action 730, 2009. Google Scholar
  • 24. Di Napoli C. et al., “Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI)”, International Journal of Biometeorology, vol. 62, no. 7, (Jul. 2018), pp. 1155–1165. https://doi.org/10.1007/s00484-018-1518-2 Google Scholar
  • 25. “BIOMETEO IMGW-PIB | Serwis biometeorologiczny”, Available: https://biometeo.imgw.pl/?page=UTCI [Accessed: 29 December 2023] Google Scholar
  • 26. Krzyżewska A. et al., “Warunki meteorologiczne w Lublinie podczas wyjątkowo uciążliwej fali upałów z sierpnia 2015 r.”, Przegląd Geofizyczny, vol. Z. 3-4, (2016). Google Scholar
  • 27. Bröde P. and Kampmann B., “Temperature-Humidity-Dependent Wind Effects on Physiological Heat Strain of Moderately Exercising Individuals Reproduced by the Universal Thermal Climate Index (UTCI)”, Biology, vol. 12, no. 6, (May 2023), p. 802. https://doi.org/10.3390/biology12060802 Google Scholar
  • 28. Novák M., “Use of the UTCI in the Czech Republic”, Geographia Polonica, vol. 86, (Jan. 2013), pp. 21–28. https://doi.org/10.7163/GPol.2013.3 Google Scholar
  • 29. Gnatowska R., “Selection of criteria in pedestrian wind comfort assessment”, Budownictwo i Architektura, vol. 8, no. 1, (Jun. 2011), pp. 005–013. https://doi.org/10.35784/bud-arch.2254 Google Scholar
  • 30. Klemm K., “Human comfort criteria in urban environment”, Budownictwo i Architektura, vol. 12, no. 2, (Jun. 2013), pp. 127–133. https://doi.org/10.35784/bud-arch.2111 Google Scholar
  • 31. Szer I. et al., “Using meteorological data to estimate heat stress of construction workers on scaffolds for improved safety standards”, Automation in Construction, vol. 134, (Feb. 2022), p. 104079. https://doi.org/10.1016/j.autcon.2021.104079 Google Scholar
  • 32. Bochenek A. D. et al., “Assessment of effectiveness of selected adaptation actions to climate change. The example of the New Centre of Lodz.”, Budownictwo i Architektura, vol. 21, no. 4, (Dec. 2022), pp. 025–042. https://doi.org/10.35784/bud-arch.3150 Google Scholar
  • 33. Bochenek A. and Klemm K., “Ocena możliwości zastosowania danych pogodowych w symulacjach parametrów meteorologicznych”, Fizyka Budowli w Teorii i Praktyce, vol. T. 10, nr 1, (2018). Google Scholar
  • 34. Przesmycka N. et al., “The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland”, Energies, vol. 15, no. 18, (Jan. 2022), p. 6504. https://doi.org/10.3390/en15186504 Google Scholar
  • 35. Sachindra D. A. et al., “Temperature and urban heat island effect in Lublin city in Poland under changing climate”, Theoretical and Applied Climatology, vol. 151, no. 1, (Jan. 2023), pp. 667–690. https://doi.org/10.1007/s00704-022-04285-0 Google Scholar
  • 36. “Potential of green infrastructure to mitigate urban heat island effect under changing climate: a case study of Lublin city in Poland”, UMCS. Available: https://projektybadawcze.umcs.pl/miedzynarodowe/inspiracje/potential-of-green-infrastructure-to-mitigate-urban-heat-island-effect-under-changing-climate-a-case-study-of-lublin-city-in-poland/ Google Scholar
  • 37. GUS, “Informacja o wynikach Narodowego Spisu Powszechnego Ludności i Mieszkań 2021 na poziomie województw, powiatów i gmin”, stat.gov.pl. Available: https://stat.gov.pl/spisy-powszechne/nsp-2021/nsp-2021-wyniki-ostateczne/informacja-o-wynikach-narodowego-spisu-powszechnego-ludnosci-i-mieszkan-2021-na-poziomie-wojewodztw-powiatow-i-gmin,1,1.html [Accessed: 06 September 2023] Google Scholar
  • 38. “Lublin”, in Wikipedia, wolna encyklopedia, [Accessed: 06 September 2023] Google Scholar
  • 39. GUS, “Budownictwo mieszkaniowe w województwie lubelskim w 2022 roku”, lublin.stat.gov.pl. Available: https://lublin.stat.gov.pl/opracowania-biezace/opracowania-sygnalne/przemysl-budownictwo/budownictwo-mieszkaniowe-w-wojewodztwie-lubelskim-w-2022-roku,4,16.html [Accessed: 06 September 2023] Google Scholar
  • 40. Lublin U. M., “Dane demograficzne - stan na dzień 30.04.2021 r.”, bip.lublin.eu. Available: https://bip.lublin.eu/urzad-miasta-lublin/dane-demograficzne/dane-demograficzne-stan-na-dzien-30-04-2021-r-,91,22886,2.html [Accessed: 03 September 2023] Google Scholar
  • 41. “Geoportal Lublin”, Available: https://geoportal.lublin.eu/2d/ [Accessed: 03 September 2023] Google Scholar
  • 42. Kuśmierz A. et. al., “Plan adaptacji do zmian klimatu Miasta Lublin do roku 2030”. Lublin, Warszawa, 2018. Google Scholar
  • 43. “ENVI-met high-resolution 3D modeling for Climate Adaption”, Available: https://www.envi-met.com/ [Accessed: 16 August 2023] Google Scholar
  • 44. “Model turbulencji [holistyczny model mikroklimatu]”, Available: https://envi-met.info/doku.php?id=kb:turbulence [Accessed: 14 December 2023] Google Scholar
  • 45. “Historyczne dane pomiarowe”, Dane meteorologiczne. Available: https://meteomodel.pl/dane/historyczne-dane-pomiarowe/ Google Scholar
  • 46. Błażejczyk K. et al., “UTCI - nowy wskaźnik oceny obciążeń cieplnych człowieka = UTCI - new index for assessment of heat stress in man”, Przegląd Geograficzny, vol. 82, no. 1, (2010), pp. 49–71. Google Scholar
  • 47. Eingrüber N. et al., “Investigation of the ENVI-met model sensitivity to different wind direction forcing data in a heterogeneous urban environment”, in Advances in Science and Research, 2023, vol. 20, pp. 65–71. https://doi.org/10.5194/asr-20-65-2023. Google Scholar
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c85c1e1-10b9-438e-bf93-d0ab738e7f37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.