Wojciech LUDWIG, Wojciech SAWIŃSKI

e-mail: wojciech.ludwig@pwr.wroc.pl

Zakład Inżynierii Chemicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław

Modelowanie CFD mieszalnika strumienicowego

Wstęp

Metody CFD (*Computational Fluid Dynamics*) pozwalają na numeryczne rozwiązanie układów równań różniczkowych, które tworzą model matematyczny procesów transportu w płynach i w ciałach stałych. Procedury te nie zastępują podejścia teoretycznego i eksperymentalnego w mechanice płynów, ale świetnie je uzupełniają [*Anderson, 1995; Chung, 2002*].

Symulacje przepływów stały się częścią procesu projektowego wielu firm. Dały one możliwość optymalizacji już istniejących konstrukcji, wpływu zmian na charakterystykę produktu, a także testowania nowatorskich rozwiązań. Możliwość przewidywania wydajności i specyfikacji produktu, umożliwiła znaczne skrócenie czasu projektowania oraz ograniczyła liczbę budowanych prototypów. Stosowanie takich technik projektowych przełożyło się bezpośrednio na mierzalne korzyści finansowe takie jak jakość i cena końcowa produktu. Znacznie poprawiło to konkurencyjność firm, które zainwestowały w tego typu metody analiz.

Analizy różnorodnych procesów za pomocą narzędzi CFD charakteryzują się zaletami, które zachęcają do ich coraz szerszego stosowania. Można do nich zaliczyć [*Jaworski*, 2005]:

- niezależność jakości prognoz od skali procesu (przy powiększaniu do skali technicznej jak i przy pomniejszaniu do mikroskali),
- większą efektywność nakładów finansowych (symulacje numeryczne w miejsce eksperymentów),
- skrócenie czasu potrzebnego w pracach badawczo-rozwojowych,
- łatwy i szeroki dostęp do informacji technicznej,
- możliwość symulowania warunków niemożliwych lub trudnych do uzyskania w eksperymencie.

Metody CFD zostały także z powodzeniem zastosowane do opisu zjawisk zachodzących w mieszalnikach strumieniowych i strumienicowych [*Patwardhan*, 2002; *Furman i Stegowski*, 2011].

Celem pracy było opracowanie modelu matematycznego opisującego mieszalnik strumienicowy własnej konstrukcji, a następnie jego rozwiązanie metodami CFD oraz weryfikacja na podstawie przeprowadzonych wcześniej badań eksperymentalnych.

Układ modelowany

Rys. 1 przedstawia instalację badawczą wraz z modelowanym mieszalnikiem strumienicowym. Woda zasysana była z górnej części zbiornika szklanego – 1 o wymiarach: wysokość 0,64 m, długość 0,286 m, szerokość 0,286 m, a następnie tłoczona pompą – 5 przez zawór regulacyjny – 4 i rotametr – 3 do dyszy strumienicy – 2 (Rys. 2), która umiesz-

Rys. 1. Mieszalnik strumienicowy wraz z instalacją badawczą: *1* – mieszalnik strumienicowy, *2* – strumienica, *3* – rotametr, *4* – zawór regulacyjny, *5* – pompa

Rys. 2. Strumienica zastosowana w modelowanym mieszalniku: *I* – dyfuzor, 2 – wkładka mieszająca, 3 – komora ssawna wraz z otworami zasysajacymi, 4 – o-ring uszczelniający komorę ssawną, 5 – dysza

czona była centralnie w maksymalnej odległości od dna aparatu. Strumienicę wykonano poprzez modyfikację laboratoryjnej pompki wodnej, w jej komorze ssawnej wywiercono boczne otwory, umożliwiające zasysanie cieczy ze zbiornika. Pod wpływem podciśnienia wytwarzanego w komorze strumienicy następował transport cieczy ze zbiornika.

Model CFD i jego rozwiązanie

Model CFD mieszalnika strumienicowego opiera się na uniwersalnych równaniach zachowania pędu

$$\frac{\partial(\rho\vec{u})}{\partial t} + \vec{u}\nabla\vec{u} + \nabla P - \mu\nabla^{2}\vec{u} - \nabla\overline{\tau}_{xy}^{\Xi} - \vec{S}_{\psi} = 0$$
(1)

i masy

$$\frac{\partial p}{\partial t} + \nabla(\rho \vec{\mathbf{v}}) = 0 \tag{2}$$

przy założeniu przepływu burzliwego cieczy newtonowskiej, nieściśliwej. Do opisu przepływu turbulentnego zastosowano podejście *Reynoldsa*, jako jedyne nadające się do obliczeń inżynierskich. Równanie *Naviera-Stokesa* przyjmuje wtedy postać równ. *Reynoldsa* (1).

Model turbulencji

Tensor naprężeń turbulentnych sprawia, że równanie *Reynoldsa* stanowi układ otwarty, ponieważ wprowadza sześć dodatkowych niewiadomych. W związku z tym stosuje się tzw. modele turbulencji. Na podstawie wcześniejszych badań postanowiono zastosować klasyczny model półempiryczny typu *k-ε* z modyfikacją *Realizable* [*Lauder i Spalding, 1972; Chung, 2002; Ludwig i in., 2010*].

Ponieważ analityczne rozwiązanie przedstawionego powyżej układu równań jest niemożliwe, konieczny jest wybór narzędzia pozwalającego otrzymać rozwiązanie metodami numerycznymi. Do obliczeń zastosowano najpopularniejszy program tego typu – pakiet *Fluent 6.3.2*, wielokrotnie testowany dla różnych przypadków przepływu, a przez to charakteryzujący się dużą pewnością zastosowanego w nim kodu. Ze względu na czas obliczeń i niewielki wpływ na wyniki (test dla dwóch skrajnych punktów pomiarowych) zrezygnowano z pełnego modelu trójwymiarowego stosując uproszczony model dwuwymiarowy, osiowosymetryczny.

Siatka numeryczna i parametry solvera

W związku z zastosowanymi w programie *Fluent* metodami numerycznymi (metoda objętości kontrolnej) pierwszym etapem rozwiązania modelu przepływu jest wygenerowanie siatki numerycznej o optymalnych parametrach oraz sprawdzenie niewrażliwości wyników na zmianę jej gęstości. Obliczenia wykonano dla 6 siatek trójkątnych wygenerowanych w całym aparacie o różnej liczbie komórek (Tab. 1) przy stałym natężeniu przepływu cieczy (0,073 kg/s). Następnie porównano ich parametry jakościowe (*cell equiangle skew, cell volume change*). Parametr *cell equiangle skew* jest definiowany jako różnica pomiędzy kształtem komórki a kształtem komórki o jednakowych kątach (trójkąta równobocznego, prostokąta). *Cell volume change* jest to parametr określający maksymalną zmianę objętości (powierzchni) bieżącej komórki i jej sąsiadów. Najlepiej, gdy jest on zbliżony do jedności. Ważnym parametrem opisującym zmiany przepływu jest całka objętościowa prędkości. Jej wartości były porównywane w celu określenia globalnej zmiany prędkości w całym aparacie.

Wartości badanych parametrów okazały się najbliższe oczekiwanym dla siatki nr 3 o 836 348 komórkach (Tab. 1). Od tej liczby komórek nie obserwowano gwałtownych zmian całek objętościowych prędkości. Ponadto czas potrzebny na wykonanie obliczeń był dużo niższy niż dla siatek 5 i 6. Siatka posiadała największą gęstość w obszarze dużej zmienności prędkości cieczy (strefa wypływającej strugi). Stałe dla wszystkich symulacji ustawienia *solvera* przedstawiono w tab. 2.

Tab. 1. Parametry badanych siatek numerycznych (wartość 0 parametru cell equiangle skew wskazuje pełne dostosowanie, wartość 1 – całkowite zdegenerowanie komórki)

Lp.	Liczba komórek	Całka objętościowa pola prędkości (m/s)/(m ³)	Maksymalna wartość parametru cell equiangle skew	Minimalna wartość parametru <i>cell volume</i> <i>change</i>	Maksymalna wartość param- etru cell volume change
1	83 549	8,69.10-4	0,935	0,978	13,739
2	334 196	7,34.10-4	0,972	1,000	7,353
3	836 348	$4.02 \cdot 10^{-2}$	0,763	0,990	2,308
4	1 623 080	4,14.10-2	0,889	0,997	4,001
5	2 172 878	4,14.10-2	0,889	0,997	4,071
6	3 345 392	4,14.10-2	0,823	1,000	2,150

Tab. 2. Parametry solvera stałe dla wszystkich symulacji

Parametr solvera	Wartość		
Typ solvera	Dwuwymiarowy, osiowosymetryczny, rozdzielony, ustalony		
Współczynniki relaksacji	Proponowane domyślnie przez program		
Dyskretyzacja	Dla wszystkich parametrów: drugiego rzędu pod prąd		
Sprzęganie ciśnienia z prędkością	SIMPLE		

Wyniki obliczeń

Przedstawione w poprzednim rozdziale optymalne parametry solvera i siatki numerycznej zastosowano do rozwiązania modelu przy różnych natężeniach przepływu cieczy zasilającej strumienicę (0,023÷0,073 kg/s) otrzymując wartości ciśnienia i prędkości wewnątrz całego aparatu. Najciekawsze z punktu widzenia badacza profile prędkości wypływającej ze strumienicy strugi porównano z własnymi danymi eksperymentalnymi otrzymanymi metodą DPIV (*Digital Particle Image Velocimetry*) (Rys. 3).

Rys. 3. Porównanie wyników prędkości płynu w wypływającej z dyszy strudze otrzymanych z symulacji z danymi eksperymentalnymi (natężenie przepływu cieczy zasilającej 0,0233 kg/s, odległość od wylotu z dyszy 101 mm)

Model w sposób prawidłowy przewidywał kształt profilu prędkości (krzywa *Gaussa*) oraz wpływ odległości od wylotu strumienicy na podstawowe parametry strugi. Średnica strugi wraz ze wzrostem odległości od dyszy rosła, a prędkość maksymalna malała (Rys. 4). Wielkości te ustalano na podstawie parametrów krzywej *Gaussa* aproksymującej punkty pomiarowe i obliczone.

Rys. 4. Porównanie wyników profili prędkości płynu w strudze wypływającej z dyszy otrzymanych z symulacji w różnych odległościach od wylotu dyszy (natężenie przepływu cieczy zasilającej 0,073 kg/s)

Średnia wartość błędu względnego prędkości wyznaczonych numerycznie względem danych doświadczalnych wyniosła 22%. Wynik ten mógł być zawyżony poprzez pewne niedoskonałości pomiaru np. przesunięcie osi strugi względem środka aparatu spowodowane niedokładnym wycentrowaniem dyszy (Rys. 3), czego model nie uwzględniał.

Wnioski

Prezentowany model CFD umożliwia wyznaczenie najważniejszych parametrów hydrodynamicznych w mieszalniku strumienicowym: pól prędkości oraz ciśnienia wewnątrz aparatu.

Dzięki temu możliwe jest badanie wpływu zmiennych konstrukcyjnych i ruchowych na zachodzący w nim proces mieszania. Pozwala to na wyznaczenie tzw. stref martwych (o minimalnej prędkości przepływu cieczy) w aparacie.

Wyznaczone optymalne parametry modelu posłużą w przyszłości do modyfikacji aparatu do odsalania ropy naftowej.

Oznaczenia

- l odległość od wylotu strumienicy, [m]
- P ciśnienie, [Pa]
- r odległość od osi dyszy, [m]
- \vec{S}_{ψ} człon opisujący zewnętrzne siły objętościowe, [N/m³]
- \vec{v} wektor prędkość płynu, [m/s]
- \vec{u} wektor prędkości średniej płynu, [m/s]
- *W* prędkość w wypływającej strudze, [m/s]
- τ_{xy} tensor napreżeń *Revnoldsa*, [Pa]
- μ współczynnik dynamicznej lepkości płynu, [Pa·s]
- ρ gęstość płynu, [kg/m³]

LITERATURA

- Anderson J., 1995. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York.
- Chung T. J., 2002. Computational Fluid Dynamics. Cambridge Univ. Press, Cambridge.
- Furman L., Stegowski Z., 2011. CFD models of jet mixing and their validation by tracer experiments. *Chem. Eng. Proc.*, **50**, nr 3, 300-304. DOI: 10.1016/j. cep.2011.01.007
- Jaworski Z., 2005. Numeryczna mechanika płynów w inżynierii chemicznej i procesowej. AOW EXIT, Warszawa
- Lauder B.E., Spalding D.B., 1972. Lectures in mathematical models of turbulence. Academic Press, London
- Ludwig W., Dziak J., Sawiński W., 2010. Optymalizacja pompy strumieniowej za pomocą metod CFD. *Inż. Ap. Chem.*, **49**, nr 1, 67-68
- Patwardhan A.W., 2002. CFD modeling of jet mixed tanks. Chem. Eng. Sci., 57, 1307-1318. DOI: 10.1016/S0009-2509(02)00049-0

Autorzy dziękują mgr inż. Aleksandrze Smalewskiej za wykonanie obliczeń.