PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bias drift estimation for mems gyroscope used in inertial navigation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MEMS gyroscopes can provide useful information for dead-reckoning navigation systems if suitable error compensation algorithm is applied. If there is information from other sources available, usually the Kalman filter is used for this task. This work focuses on improving the performance of the sensor if no other information is available and the integration error should be kept low during periods of still (no movement) operation. A filtering algorithm is proposed to follow bias change during sensor operation to reduce integration error and extend time between successive sensor calibrations. The advantage of the proposed solution is its low computational complexity which allows implementing it directly in the micro-controller of controlling the MEMS gyroscope. An intelligent sensor can be build this way, suitable for use in control systems for mobile platforms. Presented results of a simple experiment show the improvement of the angle estimation. During the 12 hours experiment with a common MEMS sensor and no thermal compensation, the maximum orientation angle error was below 8 degrees.
Rocznik
Strony
104--110
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Acosta Calderon C.A., Mohan E.R., Ng B.S. (2015), Development of a hospital mobile platform for logistics tasks, Digital Communications and Networks, 1 (2), 102-111.
  • 2. Allan D.W. (1966), Statistics of atomic frequency standards, Proceedings of the IEEE, 54 (2), 221-230.
  • 3. Barrett J.M. (2014), Analyzing and Modeling Low-Cost MEMS IMUs for use in an Inertial Navigation System, Worcester Polytechnic Institute.
  • 4. Chatterjee G., Latorre L., Mailly F., Nouet P., Hachelef N., Oueda C. (2015), Smart-MEMS based inertial measurement units: gyro-free approach to improve the grade, Microsystem Technologies, 1-10
  • 5. Enberg D. (2015), Performance Evaluation of Short Time Dead Reckoning for Navigation of an Autonomous Vehicle, Department of Electrical Engineering, Linköpings universitet
  • 6. Fang L., Antsaklis P.J., Montestruque L.A., McMickell M.B., Lemmon M., Sun Y., Fang H., Koutroulis I., Haenggi M., Xie M., Xie X. (2005) Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience, IEEE Trans Instrum Meas, 54, 2342-2358.
  • 7. Ferraina M. (2015), L3GD20H: 3-axis digital output gyroscope, STMicroelectronics, DocID026442 Rev 2
  • 8. Fuchs C., Aschenbruck N., Martini P., Wieneke M (2011), Indoor tracking for mission critical scenarios: A survey, Pervasive and Mobile Computing, 7 (1), 1-15.
  • 9. Ganesharajah T., Hall N.G., Sriskandarajah C. (1988), Design and operational issues in AGV-served manufacturing systems, Annals of Operations Research, 76 (0), 109-154.
  • 10. Gersdorf B., Freese U. (2013), A Kalman Filter for Odometry using a Wheel Mounted Inertial Sensor, ICINCO, 1, 388-395.
  • 11. Guizzo E. (2008), Three Engineers, Hundreds of Robots, One Warehouse, IEEE Spectrum, 45(7), 26-34.
  • 12. Harle R. (2013), A Survey of Indoor Inertial Positioning Systems for Pedestrians, IEEE Communications Surveys & Tutorials, 15(3), 1281-1293.
  • 13. Hedberg E., Hammar M. (2015), Train Localization and Speed Estimation Using On-Board Inertial and Magnetic Sensors, Department of Electrical Engineering, Linköpings universitet.
  • 14. Herrero-Perez D., Jose J., Martinez-Barbera H. (2013), An Accurate and Robust Flexible Guidance System for Indoor Industrial Environments, International Journal of Advanced Robotic Systems, 10 (1), 1-9
  • 15. Hyyti H., Visala A. (2015), A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs, International Journal of Navigation & Observation, 2015, 1–18.
  • 16. Ijaz F., Yang H.K., Ahmad A.W., Lee C. (2013), Indoor positioning: A review of indoor ultrasonic positioning systems, Advanced Communication Technology (ICACT), 2013 15th International Conference, 1146-1150.
  • 17. Institute of Electrical and Electronics Engineers (2004), IEEE standard specification format guide and test procedure for coriolis vibratory gyros, Institute of Electrical and Electronics Engineers, New York.
  • 18. Jiang C., Xue L., Chang H., Yuan W. (2012), Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling, Sensors, 12(12), 172-1737.
  • 19. Lee S.-Y., Yang H.-W. (2012), Navigation of automated guided vehicles using magnet spot guidance method, Robotics and Computer-Integrated Manufacturing, 28(3), 425-436.
  • 20. Mautz R. (2009), Overview of current indoor positioning systems, Geodesy and Cartography, 35(1), 18-22.
  • 21. Mountz M.C. (2005), Material handling system and method using mobile autonomous inventory trays and peer-to-peer communications, US/6950722
  • 22. Romaniuk S. Gosiewski Z. (2014), Kalman Filter Realization for Orientation and Position Estimation on Dedicated Processor, Acta Mechanica et Automatica, 8(2), 88-94
  • 23. Scarlett J. (2007), Enhancing the performance of pedometers using a single accelerometer, Application Note, Analog Devices, AN-900
  • 24. STMicroelectronics (2013), MEMS motion sensor: three-axis digital output gyroscope L3GD20H Datasheet.
  • 25. Thielman L.O., Bennett S., Barker C.H., Ash M.E. (2002), Proposed IEEE Coriolis Vibratory Gyro standard and other inertial sensor standards, Position Location and Navigation Symposium, 2002 IEEE, 351-358.
  • 26. Weinberg H. (2011), Gyro mechanical performance: The most important parameter, Technical Article MS-2158, Analog Devices
  • 27. Yuan Q., Chen I.-M. (2014), Localization and velocity tracking of human via 3 IMU sensors, Sensors & Actuators: A. Physical, 212, 25-33.
  • 28. Zhang R., Bannoura A., Hoflinger F., Reindl L.M., Schindelhauer C. (2013), Indoor localization using a smart phone, Sensors Applications Symposium (SAS), 2013 IEEE, 38–42.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c7d4909-5ef8-4ffd-8ec8-8f18f6c8b763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.