PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The positioning performance of low-cost GNSS receivers in the Precise Point Positioning method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Satellite-based positioning, which started being developed in the mid-1960s for military purposes, is now used in almost every area. For the studies single and/or double frequency receivers are used. The cost of a receiver and antenna couple that have capable of high coordinate accuracies ranges from $3000 to $15000. With the production of Original Equipment Manufacturer (OEM) receivers, the cost of satellite-based location determination decreases to approximately one in 10 for the civilian user compared to the operations performed with geodetic receivers and antennas. However, although these receivers collect data in multi-Global Navigation Satellite System (GNSS) and frequencies, the accuracy of the coordinate values estimated is not as high as geodetic receivers and antennas. Therefore, it is necessary to carry out an accuracy study to obtain information about which studies can be used in. In this study, measurements were made at the UZEL point located on the roof of the Yıldız Technical University Geomatics Engineering Department by using the ZED-F9P-02B OEM multi GNSS receiver and ANN-MB L1/L2 multi-band GNSS patch antenna. The performance of the test results has been examined by comparing the results from CSRS(Canadian Spatial Reference System)-PPP with the coordinates of the UZEL point. As a result of the comparison, the difference between the coordinate determined with collected 3.5 hr data and the coordinates of the UZEL point has been determined as – 1.4 cm, 2.8 cm, and 9.3 cm in the East, North, and Height directions, respectively.
Rocznik
Strony
art. no. e29, 2022
Opis fizyczny
Bibliogr. 23 poz., fot., tab., wykr.
Twórcy
Bibliografia
  • 1. Biagi, L., Grec, F.C., and Negretti, M. (2016). Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacements. Sensors, 16(12), 2140. DOI: 10.3390/s16122140.
  • 2. Bilich, A., Axelrad, P., and Larson, K.M. (2007). Scientific utility of the signal-to-noise ratio (SNR) reported by geodetic GPS receivers. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS), 25–28 September 2007 (pp. 1999–2010), Fort Worth, TX, United States.
  • 3. Bulbul, S., Bilgen, B., and Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780. DOI: 10.1016/j.measurement.2020.108780.
  • 4. Cahyadi, M., Handoko, E., Mardiyanto, R. et al. (2021). Comparative Analysis of Low-Cost GNSS OEM Board K706 AND BX316 (Case Study: Bulusidokare Village Sidoarjo Regency). In IOP Conference Series: Earth and Environmental Science, 26 August 2020 (vol. 731, 012024), Indonesia.
  • 5. Casciati, F., Casciati, S., Fararelli, L. et al. (2016). Investigating the Performance of OEM Devices for Structural Monitoring. In 8th European Workshop on Structural Health Monitoring (EWSHM 2016), 5–8 July 2016 (pp. 1–8), Bilbao, Spain.
  • 6. Cina, A., and Piras, M. (2015). Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomat Nat Haz Risk, 6(5-7), 497–514. DOI: 10.1080/19475705.2014.889046.
  • 7. Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS software version 5.2.
  • 8. El-Mowafy, A. (2011). Analysis of web-based GNSS post-processing services for static and kinematic positioning using short data spans. Surv. Rev., 43(323), 535–549. DOI: 10.1179/003962611X13117748892074.
  • 9. Hill, A.C., Limp, F., Casana, J. et al. (2019). A new era in spatial data recording: low-cost GNSS. Adv. Archaeol. Pract., 7(2), 169–177. DOI: 10.1017/aap.2018.50.
  • 10. Janos, D., and Kuras, P. (2021). Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors, 21(16), 5552. DOI: 10.3390/s21165552.
  • 11. Knight, P.J., Bird, C.O., Sinclair, A. et al. (2020). A low-cost GNSS buoy platform for measuring coastal sea levels. Ocean Eng., 203, 107198. DOI: 10.1016/j.oceaneng.2020.107198.
  • 12. Kouba, J. (2009). A guide to using International GNSS Service (IGS) products.
  • 13. Kouba, J., and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solut., 5(2), 12–28. DOI: 10.1007/PL00012883.
  • 14. Nie, Z., Liu, F., and Gao, Y. (2020). Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solut., 24(1), 1–11. DOI: 10.1007/s10291-019-0922-3.
  • 15. Odolinski, R., and Teunissen, P. J. (2016). Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis. J. Geod., 90(11), 1255–1278. DOI: 10.1007/s00190-016-0921-x.
  • 16. PNT (2021). GPS Applications. Retrieved February, 2022, from https://www.gps.gov/applications/.
  • 17. Rost, C., and Wanninger, L. (2009). Carrier phase multipath mitigation based on GNSS signal quality measurements. J. Appl. Geod., 3(2), 81–87. DOI: 10.1515/JAG.2009.009.
  • 18. Takasu, T., and Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In International Symposium on GPS/GNSS, 4–6 November 2009, Jeju, Korea.
  • 19. Teunissen, P.J., and Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems (Vol. 11). Springer. DOI: 10.1007/978-3-319-42928-1.
  • 20. Uaratanawong, V., Satirapod, C., and Tsujii, T. (2020). Optimization technique for pseudorange multipath mitigation using different signal selection methods. Artif. Satell., 55(2), 77–86. DOI: 10.2478/arsa-2020-0006.
  • 21. Van Nguyen, N., Cho, W., and Hayashi, K. (2021). Performance evaluation of a typical low-cost multi-frequency multi-GNSS device for positioning and navigation in agriculture – Part 1: Static testing. Smart Agricultural Technology, 1, 100004.
  • 22. Wielgocka, N., Hadas, T., Kaczmarek, A. et al. (2021). Feasibility of using low-cost dual-frequency gnss receivers for land surveying. Sensors, 21(6), 1956. DOI: 10.3390/s21061956.
  • 23. Zumberge, J., Heflin, M., Jefferson, D. et al. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys. Res. Solid Earth, 102(B3), 5005–5017. DOI: 10.1029/96JB03860.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c7b15b1-2dde-4a8f-9b5a-762c14ea8b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.