Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an attempt to produce aluminum matrix composites reinforced with short carbon fibers by precision casting in a chamber with a pressure lower than atmospheric pressure. The composite casting process was preceded by tests related to the preparation of the reinforcement. This is related to the specificity of the precision casting process, in which the mold for shaping the castings is fired at a temperature of 720°C before pouring. Before the mold burns, the reinforcement must be inside, while the carbon fiber decomposes in the atmosphere at 396°C. In the experiment, the reinforcement in the form was secured with flake graphite and quartz sand. The performed firing procedure turned out to be effective. The obtained composite castings were evaluated in terms of the degree of alloy saturation and the displacement of carbon fibers. As a result of the conducted tests, it was found that as a result of unfavorable arrangement of fibers in the CF preform, the flow of metal may be blocked and porosity may appear in the casting.
Czasopismo
Rocznik
Tom
Strony
118--123
Opis fizyczny
Bibliogr. 22 poz., il., rys.
Twórcy
autor
- Institute of Materials Technology, Poznan University of Technology Piotrowo, Poland
Bibliografia
- [1] Kumar, A., Lal, S. & Kumar, S. (2013). Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Materials Research and Technology. 2(3), 250-254. https://doi.org/10.1016/j.jmrt.2013.03.015.
- [2] Kumar, A., Vichare., O., Debnath, K. & Paswan, M. (2021). Fabrication methods of metal matrix composites (MMCs). Materialstoday: Proceedings. 46(15), 6840-6846. https://doi.org/10.1016/j.matpr.2021.04.432.
- [3] Zyska, A., Konopka, Z., & Łągiewka, M, (2020). Impact strength of squeeze casting AlSi13Cu2-CF composite. Archives of Foundry Engineering. 20(2), 49-52. DOI: 10.24425/afe.2020.131301.
- [4] Previtali, B., Pocci, D. & Taccardo, C. (2008). Application of traditional investment casting process to aluminium matrix composites. Composites Part A: Applied Science and Manufacturing. 39(10), 1606-1617. https://doi.org/10.1016/j.compositesa.2008.07.001.
- [5] Pazhani, A., Venkatraman, M., Xavior, A. Moganraj, M., Batako, A., Paulsamy, J., Jayaseelan, J., Anbalagan, A. & Bavan, S.J. (2023). Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications. Materials & Design. 230, 111990. https://doi.org/10.1016/j.matdes.2023.111990.
- [6] Buchanan, E.K., Sgobba, S., Celuch D.M., Gomez, P.F., Onnela, A., Rose P., Postema, H., Pentella, M., Lacombe, G., Thomas, B., de Langlade, R. & Paquin, Y. (2023). Assessment of two advanced aluminium-based metal matrix composites for application to high energy physics detectors. Materials. 16(1), 268, 1-17. https://doi.org/10.3390/ma16010268.
- [7] Krishnan, R., Pandiaraj, S., Muthusamy, S., Panchal, H., Alsoufi, S.M., Ibrahim, M.M.A. & Elsheikh, A. (2022). Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behavior a review. Journal of Materials Research and Technology. 20, 650-670. https://doi.org/10.1016/j.jmrt.2022.06.178.
- [8] Dmitruk, A., Żak, A., Naplocha, K., Dudziński, W. & Morgiel, J. (2018). Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization. 146, 182-188. https://doi.org/10.1016/j.matchar.2018.10.005.
- [9] Gawdzińska, K., Chybowski, L., Przetakiewicz, W. & Laskowski R. (2017). Application of FMEA in the quality estimation of metal matrix composite castings produced by squeeze infiltration. Archives of Metallurgy and Materials. 62(4), 2171-2182. DOI: 10.1515/amm-2017-0320.
- [10] Mahaviradhan, N., Sivaganesan, S., Sravya, P.N. & Parthiban, A. (2021). Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite. Materialstoday: Proceedings. 39(1), 743-747. https://doi.org/10.1016/j.matpr.2020.09.443.
- [11] Szymański, M., Przestacki, D. & Szymański, P. (2022). Tool wear and surface roughness in turning of metal matrix composite built of Al2O3 sinter saturated by aluminum alloy in vacuum condition. Materials. 15(23), 8375, 1-17. https://doi.org/10.3390/ma15238375.
- [12] Jian-jun Sha, Zhao-zhao Lu, Ru-yi Sha, Yu-fei Zu, Ji-xiang Dai, Yu-qiang Xian, Wei Zhang, Ding Cui, Cong-lin Yan. (2021). Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites bysqueeze melt infiltration technique. Transactions of Nonferrous Metals Society of China. 31(2), 317-330. https://doi.org/10.1016/S1003-6326(21)65498-5.
- [13] Constantin, H., Harper, L., Kenned, R.A. (2018). Pressure_assisted infiltration of molten metals into non-rigid, porous carbon fibre structures. Journal of Materials Processing Technology. 255, 66-75. https://doi.org/10.1016/j.jmatprotec.2017.11.059.
- [14] Shirvanimoghaddam, K., Hamim, U.S., Akbari, K.M., Fakhrhoseini, M.S., Khayyam, H., Pakseresht, H.A., Ghasali, W., Zabet, M., Munir, S.K., Jia, S., Davim, P.J. & Naebe, M. (2017). Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing. 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032.
- [15] Piasecki, A., Paczos, P., Tuliński, M., Kotkowiak, M., Popławski, M., Jakubowicz, M., Boncel, S., Marek, A., Buchwald, T., Gapiński, B., Terzyk, P.A., Korczeniewski, E. & Wieczorowski, M. (2023). Microstructure, mechanical properties and tribological behavior of Cu-nano TiO2- MWCNTs composite sintered materials. Wear. 522, 204834-1- 204834-6. https://doi.org/10.1016/j.wear.2023.204834.
- [16] Ślosarczyk, A., Klapiszewska, I., Parus, A., Balicki, S., Kornaus, K., Gapiński, B., Wieczorowski, M., Wilk, A.K., Jesionowski, T., Klapiszewski, ł. (2023). Antimicrobial action and chemical and physical properties of CuO doped engineered cementitious composites. Scientific Reports. 13(1), 10404-1- 10404-16. https://doi.org/10.1038/s41598-023-37673-1.
- [17] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka, D., Gawdzińska, K., Przestacki, D. & Szymański, P. (2020). Decision Support System in the Field of Defects Assessment in the Metal Matrix Composites Castings. Materials. 13(16), 3552, 1-27. https://doi.org/10.3390/ma13163552.
- [18] Ma, Y., Kang, Z., Lei, X., Chen, X., Gou, C., Kang, Z. & Wang, S. (2023). Coupling effect of critical properties shift and capillary pressure on confined fluids: A simulation study in tight reservoirs. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15675.
- [19] Anson, P.J., Drew, L.A.R. & Gruzleski, E.J. (1999). The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres. Metallurgical and Materials Transactions B. 30, 1027-1032. https://doi.org/10.1007/s11663-999-0108-4.
- [20] Bainbridge, F.I. & Taylor, A.J. (2013). The surface tension of pure aluminum and aluminum alloys. Metallurgical and Materials Transactions A. 44, 3901-3909. https://doi.org/10.1007/s11661-013-1696-9.
- [21] Molina, M.J., Voytovych, R., Louis, E. & Eustathopoulos, N. (2007). The surface tension of liquid aluminium in high vacuum: The role of surface condition. International Journal of Adhesion and Adhesives. 27(5), 394-401. https://doi.org/10.1016/j.ijadhadh.2006.09.006.
- [22] Bao, S., Tang, K., Kvithyld, A., Engh, T. & Tangstad, M. (2012). Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Transactions of Nonferrous Metals Society of China. 22(8), 1930-1938. https://doi.org/10.1016/S1003-6326(11)61410-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c7687b6-17c8-4671-bc3c-9cd620696dbd