PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Microstructure and Mechanical Properties of the Slag Ladle after Exploitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of tests and examinations of the microstructure and mechanical properties of cast steel used for large-size slag ladles are presented. Castings of this type (especially large-size ladles with a capacity of up to 16 m3) operate under very demanding conditions resulting from the repeated cycles of filling and emptying the ladle with liquid slag at a temperature exceeding even 1600°C. The changes in operating temperature cause faster degradation and wear of slag ladle castings, mainly due to thermal fatigue.The tests carried out on samples taken from different parts/areas of the ladle (flange, bottom and half-height) showed significant differences in the microstructure of the flange and bottom part as compared to the microstructure obtained at half-height of the ladle wall. The flange and bottom were characterized by a ferritic-pearlitic microstructure, while the microstructure at the ladle half-height consisted of a ferritic matrix, cementite and graphite precipitates. Changes in microstructure affected the mechanical properties. Based on the test results it was found that both the flange and the bottom of the ladle had higher mechanical properties, i.e. UTS, YS, hardness, and impact energy than the centre of the ladle wall. Fractography showed the mixed character of fractures with the predominance of brittle fracture. Microporosity and clusters of non-metallic inclusions were also found in the fractures of samples characterized by low properties.
Twórcy
  • AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta str., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta str., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta str., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta str., 30-059 Krakow, Poland
  • Krakodlew S.A., 1 Ujastek Str., 30-969 Krakow, Poland
Bibliografia
  • [1] J. Dańko, M. Holtzer, Metody ograniczenia odpadów z procesów odlewniczych oraz sposoby ich zagospodarowania, Akapit Kraków (2010).
  • [2] A. Pribulová, P. Futá, D. Baricová. Production Engineering Archives 11 (2), 2-5 (2016).
  • [3] M. Mercado-Borrayo, J.L. Gonzalez-Chavez, R.M. Ramirez-Zamora, R. Schouwenaars, Journal of Sustainable Metallurgy 4, 50-67 (2018). https:doi.org/10.1007/s40831-018-0158-4
  • [4] M. Gawlicki, J. Małolepszy, Nowoczesna Gospodarka Odpadami 1-2, 15-20 (2015).
  • [5] E.L. Pisila BSc thesis, developing Practice for Protective Sand in Slag Pots, University of Oulu, Finland (2017).
  • [6] I. Jończy, L. Lata, Górnictwo i Geologia 8 (4), 51-61 (2013).
  • [7] J. Pogorzałek, P. Różański, Prace IMŻ Gliwice 1, 281-285 (2010).
  • [8] PN-EN 1563: (2018) - Foundry. Ductile iron.
  • [9] DIN 1681: (1985). Cast Steel for General Purpose - Technical Delivery Conditions from SAI Global.
  • [10] DIN 17182: (1992). General - Purpose Steel Castings with Enhanced Weldability and Higher Toughness - Technical Delivery Conditions.
  • [11] H. Rojacz, I.A. Neaacsu, L. Widder, M. Varga, J. Heiss, Wear 350-351 (15), 35-45 (2016), doi: 10.1016/j.wear.2015.12.009
  • [12] I.A. Neacsu, B. Scheichl, H. Rojacz, G. Vorlaufer, M. Varga, H. Schmid, J. Heiss, Steel Research 87 (6), 720-734 (2016), doi: 10.1002/srin.201500203
  • [13] J.X. Gao, B.Q. Wei, D.D. Li, K. He, Materials Characterization 118, 1-8 (2016), doi: 10.1016/j.matchar.2016.05.003
  • [14] S.S. Krishanan, N. Balasubramanian, Treatise on Process Metallurgy. Industrial Processes, Part A. Elsevier Cambrige (2014).
  • [15] R.A. Schaneman, Phd thesis, The Effects of Prior Microstructure on Spheroidizing Kinetics and Cold Workability in Bar Steels, Colorado School of Mines, USA (2009).
  • [16] A. Inam, R. Brydson, D.V. Edmonds, Materials Characterization 131, 509-516 (2017), doi: 10.1016/j.matchar.2017.07.040
  • [17] J. Krawczyk, J. Pacyna, R. Dąbrowski, Inżynieria Materiałowa 77 (3), 174-177 (2006).
  • [18] J. Głownia, Metallurgy and Technology of Steel Castings. Sharjah Bentham Books (2017).
Uwagi
1. This work has been partially executed under a research Project P1.1.1-PG-09-001.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c761bab-acf8-4c02-a23d-4ebd92af8466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.