Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We discuss in this work the importance of some predicates of ontological existence in mereology and in mereotopology especially for systems incorporating time. Tarski showed that mereology can be identified in some sense with complete Boolean algebras with zero 0 deleted. If one prefers to use only first-order language, the first-order theory for Boolean algebras can be used with zero included for simplicity. We extend the language of Boolean algebra with a one-place predicate AE(x), called ”actual existence” and satisfying some natural axioms. We present natural models for Boolean algebras with predicate AE(x) motivating the axioms and prove corresponding representation theorems. Mereotopology is considered as an extension of mereology with some relations of topological nature, like contact. One of the standard mereotopological systems is contact algebra, which is an extension of Boolean algebra with a contact relation C, satisfying some simple and obvious axioms. We consider in this paper a natural generalization of contact algebra as an extension of Boolean algebra with the predicate AE(x) and a contact relation Cα called ”actual contact”, assuming for them natural axioms combining Cα and AE. Relational and topological models are proposed for the resulting system and corresponding representation theorems are proved. I dedicate this paper to my teacher in logic Professor Helena Rasiowa for her 100-th birth anniversary. Professor Rasiowa showed me the importance of algebraic and topological methods in logic and this was her main influence on me.
Wydawca
Czasopismo
Rocznik
Tom
Strony
413--432
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Sofia University, Faculty of mathematics and informatics, James Bourchier 5, Sofia, Bulgaria
Bibliografia
- [1] Simons P. PARTS. A Study in Ontology, Oxford, Clarendon Press, 1987. ISBN: 0191591157, 9780191591150.
- [2] Whitehead AN. The organization of Thought, London, William and Norgate, 1917.
- [3] Whitehead AN. Science and the Modern World New Work, The MacMillan Company, 1925.
- [4] Whitehead AN. Process and Reality, New York, MacMillan, 1929.
- [5] de Laguna T. Point, line and surface as sets of solids, The Journal of Philosophy, 1922;19(17):449–461. URL: http://www.jstor.org/stable/2939504.
- [6] Bennett B, and Düntsch I. Axioms, Algebras and Topology. In:Handbook of Spatial Logics, M. Aiello, I. Pratt, and J. van Benthem (Eds.), Springer, 2007 pp. 99–160. URL https://doi.org/10.1007/978-1-4020-5587-4_3.
- [7] Vakarelov D. Region-Based Theory of Space: Algebras of Regions, Representation Theory and Logics. In: Dov Gabbay et al. (Eds.) Mathematical Problems from Applied Logics. New Logics for the XXIst Century. II. vol. 5, Springer, 2007, pp. 267–348. URL https://doi.org/10.1007/978-0-387-69245-6_6.
- [8] Hahmann T, and Gröuninger M. Region-based Theories of Space: Mereotopology and Beyond, in Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, edited by Hazarika, S., IGI Publishing, 2012 pp. 1–62. doi:10.4018/978-1-61692-868-1.ch001.
- [9] Cohn A, and Renz J. Qualitative spatial representation and reasoning. In: F. van Hermelen, V. Lifschitz and B. Porter (Eds.) Handbook of Knowledge Representation, Elsevier, 2008;3:551–596. URL https://doi.org/10.1016/S1574-6526(07)03013-1.
- [10] Dimov G, and Vakarelov D. Contact algebras and region-based theory of space: A proximity approach I. Fundamenta Informaticae, 2006;74(2-3):209–249.
- [11] Vakarelov D. Dynamic Mereotopology: A point-free Theory of Changing Regions. I. Stable and unstable mereotopological relations. Fundamenta Informaticae, 2010;100:(1-4):159–180. doi:10.3233/FI-2010-268.
- [12] Vakarelov D. Dynamic mereotopology II: Axiomatizing some Whiteheadian type space-time logics. In:Th. Bolander, T. Braüner, S. Ghilardi and L. Moss Eds. Advances in Modal Logic, vol. 9, College Publications, 2012 pp. 538–558. URL http://www.aiml.net/volumes/volume9/Vakarelov.pdf.
- [13] Vakarelov D. Dynamic mereotopology III. Whiteheadean type of integrated point-free theories of space and tyme. Part I, Algebra and Logic, 2014;53(3):191–205. URL https://doi.org/10.1007/s10469-014-9283-8. Part II, Algebra and Logic, 2016;55(1):9–23. URL https://doi.org/10.1007/s10469-016-9372-y. Part III, Algebra and Logic, 2016;55(3):181–197. URL https://doi.org/10.1007/s10469-016-9388-3.
- [14] Sikorski R. Boolean Algebras, Springer-Verlag, Berlin, 1964.
- [15] Engelking R. General topology, PWN, 1977.
- [16] Thron WJ. Proximity Structures and Grills, Math. Ann. 1973;206:35–62. doi:10.1007/BF01431527.
- [17] Rabin MO. Decidability of second-order theories and automata on infinite trees. Trans. AMS 1969;141(1-3):1–35.
- [18] Dimov G, and Vakarelov D. Topological representation of precontact algebras, In: ReLMiCS’2005, St Catharines, Canada, February 22-26, 2005, Proceedings, W. MacCaul, M. Winter and I. Düntsch (Eds.), LNCS 3929, Springer, 2006 pp. 1–16. URL https://doi.org/10.1007/11734673_1.
- [19] Düntsch I, and Vakarelov D. Region-based theory of discrette spaces: A proximity approach. In: Nadif, M., Napoli, A., SanJuan, E., and Sigayret, A. (Eds.), Proceedings of Fourth International Conference Journées de l’informatique Messine, 123-129, Metz, France, 2003. Journal version in: Annals of Mathematics and Artificial Intelligence, 2007;49(1-4):5–14.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c7466aa-d558-4b8f-851e-758b0af4a9d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.