PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examinations of Steel Overlap Joints Obtained Using the Friction Stir Welding Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to analyse mechanical properties and microstructure of joints obtained using friction stir welding (FSW) technology. The focus of the study was on overlap linear FSW joints made of 1.4541 DIN 17441 steel sheets with thickness of 1.2 mm. Tools used during friction stir welding of steel joints were made of W-Re alloy. The joints were subjected to visual inspection and their load bearing capacity was evaluated by means of the tensile strength test with analysis of joint breaking mechanism. Furthermore, the joints were also tested during metallographic examinations. The analysis performed in the study revealed that all the samples of the FSW joints were broken outside the joint area in the base material of the upper sheet metal, which confirms its high tensile strength. Mean load capacity of the joints was 15.8 kN. Macroscopic and microscopic examinations of the joints did not reveal significant defects on the joint surface and in the cross-sections.
Słowa kluczowe
Twórcy
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Civil Engineering, Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Civil Engineering, Dąbrowskiego 69, 42-201 Częstochowa, Poland
Bibliografia
  • [1] M. Russell, Friction stir welding at TWI, Cambridge: TWI (2010).
  • [2] M. Matsushita, Y. Kitani, R. Ikeda, JFE Technical Report 20, 133-140 (2015).
  • [3] J. Defalco, R. Steel, Weld. J. 88 (5), 44-48 (2009).
  • [4] R. Rai, A. De, H. K. D. H. Bhadeshia, T. DebRoy, Sci. Technol. Weld. Joi. 16 (4), 325-342 (2011).
  • [5] P. Lacki, A. Derlatka, Compos. Struct. 159, 491-497 (2017).
  • [6] P. Lacki, A. Derlatka, Compos. Struct. 202, 201-209 (2018).
  • [7] K. Chiteka, IOSR-JMCE 9 (3), 16-20 (2013).
  • [8] T. J. Lienert, W. L. Stellwag Jr., B. B. Grimmett, R. W. Warke, Weld. J. 82 (1), 1-9 (2003).
  • [9] T. Ishikawa, H. Fujii, K. Genchi, S. Iwaki, S. Matsuoka, K. Nogi, ISIJ International 49 (6), 897-901 (2009).
  • [10] H. Fujii, L. Cui, K. Nakata, K. Nogi, Weld. World 52 (9-10), 75-81 (2008).
  • [11] H. Fujii, U. Rintaro, C. Ring, N. Kazuhiro, K. Nogi, Transactions of JWRI 35 (1), 47-52 (2006).
  • [12] H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, K. Nogi, Mater. Trans. 47 (1), 239-242 (2006).
  • [13] S. Kumar, N. Murugan, K. K. Ramachandran, Int. J. Refract. Met. H. 58, 196-205 (2016).
  • [14] L. Cui, H. Fujii, N. Tsuji, K. Nogi, Scripta Mater. 56, 637-640 (2007).
  • [15] Y. D. Chung, H. Fujii, R. Ueji, N. Tsuji, Scripta Mater. 63, 223-226 (2010).
  • [16] C. Meran, O. E. Canyurt, J. Achiev. Mater. Manuf. Eng. 43 (1), 432-439 (2010).
  • [17] S. Sulaiman, S. Emamian, M. N. Sheikholeslam, M. Mehrpouya, IJMMM 1 (1), 85-87 (2013).
  • [18] J. Azevedo, L. Quintino, V. Infante, R. M. Miranda, J. dos Santos, Soldagem Insp. 21 (1), 16-29 (2016).
  • [19] A. Derlatka, P. Lacki, Computer Methods in Materials Science 15 (1), 144-149 (2015).
  • [20] A. Pradeep, S. Muthukumaran, IJMPE 2 (7), 92-98 (2014).
  • [21] S. S. Kumar, N. Murugan, K. K. Ramachandran, J. Mater. Process. Tech. 254, 79-90 (2018).
  • [22] S. Sabooni, F. Karimzadeh, M. H. Enayati, A.H.W. Ngan, Mater. Design 76, 130-140 (2015).
  • [23] M. P. Meshram, B. K. Kodli, S. R. Dey, Procedia Mater. Sci. 6, 135-139 (2014).
  • [24] H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Fenga, P. Han, J. Li, Mater. Design 118, 207-217 (2017).
  • [25] A. N. Siddiqueea, S. Pandey, N. Z. Khana, Materials Today: Proceedings 2, 1388-1397 (2015).
  • [26] H. B. Cui, G. M. Xie, Z. A. Luo, J. Ma, G. D. Wang, R.D.K. Misra, Mater. Design 106, 463-475 (2016).
  • [27] S. S. Rezaei-Nejad, A. Abdollah-zadeh, M. Hajian, F. Kargar, R. Seraj, Proc. Mat. Sci. 11, 397-402 (2015).
  • [28] D. H. Choi, C. Y. Lee, B. W. Ahn, J. H. Choi, Y. M. Yeon, K. Song, H. S. Park, Y. J. Kim, C. D. Yoo, S. B. Jung, Int. J. Refract. Met. H. 27, 931-936 (2009).
  • [29] J. N. Kim, S. Y. Lee, H. D. Kwun, K. S. Shin, Ch. Y. Kang, JSA 20 (3), 192-197 (2014)
  • [30] B. Thompson, S. S. Babu, Weld. J. 89 (12), 256-261 (2010) .
  • [31] A.M.D. Mystica, IJRET 3 (9), 286-289 (2014).
  • [32] A. De, H.K.D.H. Bhadeshia, T. DebRoy, Mater. Sci. Tech-lond. 30 (9), 1050-1056 (2014)
  • [33] A. Derlatka, K. Kudła, K. Makles, Numerical analysis of RFSSW joints, in. E. Oñate, X. Oliver, A. Huerta (Eds.), 11th World Congress on Computational Mechanics (WCCM XI), Barcelona (2014).
  • [34] K. Mankari, S. G. Acharyya, Appl. Surf. Sci. 426, 944-950 (2017).
  • [35] K. Mankari, S. G. Acharyya, Eng. Fail. Anal. 86, 33-43 (2018).
  • [36] M. Bellet, G. Qiu, J.-M. Carpreau, J. Mater. Process. Tech. 230, 143-152 (2016).
  • [37] Z. Brytan, STAL Metals & New Technologies (in Polish: Metale & Nowe Technologie) 5-6, 12-13 (2014).
  • [38] A. Śmiglewicz, M. Jabłońska, W. Moćko, K. Kowalczyk, E. Hadasik, Arch. Metall. Mater. 62 (4), 2255-2260 (2017).
Uwagi
EN
1. Financial support of The National Centre for Research and Development, European Union, PZL Mielec / a Sikorsky Company, in the framework of European Regional Development Fund Project "Advanced techniques for the fabrication of airframe structures using innovative friction stir welding (FSW) technology”, no. INNOLOT/I/4/NCBR/2013 is gratefully acknowledged.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c6d2ebe-ab8d-400f-8aa1-d247b11e5ca8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.