Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Akumulacja Cd i Pb w wodzie, osadzie i dwóch gatunkach roślin szuwarowych (Phragmites australis, Typha angustifolia) ekosystemów wodnych
Języki publikacji
Abstrakty
Cd and Pb concentrations were measured in water, sediment and plant organs collected from selective sites located along the Bogdanka river (Poznań, Poland) in the 2012 growing season. The aim of the investigations was to monitor changes in heavy metal (HM) concentrations in different media over the periods, as well as to evaluate potential of two littoral plants, Phragmites australis and Typha angustifolia, for phytoremediation under natural conditions. Investigations revealed differences in HM concentrations in water and sediments. Higher values were observed in sediments than in water. The decrease in concentrations of both HMs in sediments was noted in two of the three selected water reservoirs during growing seasons, which suggests the possibility of their adsorption and accumulation by aquatic plants. Both investigated plant species accumulated ample amount of Cd and Pb in underground and aboveground plant tissues, however T. angustifolia revealed higher Cd translocation potential than P. australis. The latter revealed higher Pb accumulation in two lakes. Moreover, the translocation ratio was usually higher in spring, especially for Pb, in both plant species. Increasing level of pollution load index in sediment along the Bogdanka watercourse indicates accumulation of measured HMs.
Stężenie Cd i Pb mierzono w wodzie, osadach, jak również w organach roślin zebranych z wybranych stanowisk zlokalizowanych wzdłuż biegu rzeki Bogdanka (Poznań, Polska) w sezonie wegetacyjnym 2012 roku. Celem badań był monitoring zmian zawartości metali ciężkich w różnych mediach w określonym czasie, jak również ocena dwóch gatunków roślin szuwarowych, Phragmites australis i Typha angustifolia, pod kątem zastosowania do fitoremediacji w warunkach naturalnych. Badania wykazały zróżnicowanie w stężeniach metali ciężkich w wodzie i osadach. Wyższe wartości zanotowano w osadach w porównaniu do wody. Zmniejszenie stężenia obu badanych pierwiastków zanotowano w osadach w dwóch z trzech badanych zbiorników w ciągu sezonu wegetacyjnego, co sugeruje możliwość ich absorpcji i akumulacji przez rośliny wodne. Oba badane gatunki zakumulowały pewne ilości Cd i Pb w częściach podziemnych i nadziemnych, jednakże T. angustifolia wykazała wyższy potencjał do translokacji Cd w porównaniu do P. australis. Ta ostatnia wykazała z kolei wyższy poziom akumulacji Pb w dwóch jeziorach. Współczynnik translokacji był w większości przypadków wyższy w okresie wiosennym, w szczególności dotyczy to Pb dla obu badanych gatunków. Zwiększający się poziom indeksu ładunku zanieczyszczeń w osadach wzdłuż biegu rzeki Bogdanka wskazywał na akumulację badanych pierwiastków.
Czasopismo
Rocznik
Tom
Strony
47--57
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- Poznań University of Life Sciences, Poland, Department of Ecology and Environmental Protection
autor
- Poznań University of Life Sciences, Poland, Institute of Land Improvement, Environmental Development and Geodesy
autor
- Poznań University of Life Sciences, Poland, Department of Chemistry
autor
- Poznań University of Life Sciences, Poland, Department of Ecology and Environmental Protection
autor
- Poznań University of Life Sciences, Poland, Department of Chemistry
Bibliografia
- [1]. Banerjee, U. & Gupta, S. (2012). Source and distribution of lead, cadmium, iron and manganese in the river Damodar near Asansol Industrial Area, West Bengal, India, International Journal of Environmental Sciences, .
- [2]. Birch, L., Hanselmann, K.W. & Bachofen, R. (1996). Heavy metal conservation in Lake Cadagno sediment: historical records of anthropogenic emissions in a meromictic alpine lake, Water Research, 30, pp. 679–687.
- [3]. Bonanno, G. & Lo Giudice, R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators, Ecological Indicators 10, pp. 639–945.
- [4]. Buczyńska, E., Szulczyńska, M. & Tybiszewka, E. (1995). Strzeszyńskie Lake quality status in 1994. Komunikat nr 155, Poznań: Wojewódzki Inspektorat Ochrony Środowiska w Poznaniu; Państwowa Inspekcja Ochrony Środowiska. (in Polish)
- [5]. Concas, A., Ardau, C., Cristini, A., Zuddas, P. & Cao, G. (2006). Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site, Chemosphere, 63, pp. 244–253.
- [6]. Copper, P.F., Job, G.D., Green, M.B. & Shutes, R.B.E. (1996). Reed beds and constructed wetlands for wastewater treatmen, WRc Swindom.
- [7]. Czarnecka, H. (2005). Atlas of hydrographical division of Poland, IMGW, Warszawa 2005. (in Polish)
- [8]. Damodharan, U. & Reddy, M.V. (2014). Uptake of toxic trace metals (Cd, Pb) and micro nutrients (Cu, Zn, Mn) by sugarcane (Saccharum officinarum L.) irrigated with treated effluents of sugar industry, Archives of Environmental Protection 40 (1), pp. 13–22.
- [9]. Demirezen, D. & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey), Chemosphere, 56, pp. 685–696.
- [10]. Drzewiecka, K., Borowiak, K., Mleczek, M., Zawada, I. & Goliński, P. (2010). Cadmium and lead accumulation in two littoral plants of five lakes of Poznan City, Poland, Acta Biologica Cracoviensis Botanica, 52(2), pp. 59–68.
- [11]. Duman, F., Mehmet, C. & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis), Ecotoxicology, 16, pp. 457–463.
- [12]. Duman, F. & Obali, O. (2008). Seasonal variation of metal accumulation and translocation in yellow pond-lily (Nuphar lutea), Chemical Speciation and Bioavailability, 20(3), pp. 181–190.
- [13]. Finkelman, R.B. & Gross, P.M.K. (1999). The types of data needed for assessing the environmental and human health impacts of coal, International Journal of Coal Geology, 40, pp. 91–101.
- [14]. Horsfall Jr., M. & Alba A.A. (2003). Sorption of cadmium(II) and zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz.), Water Research, 37, pp. 4913–4923.
- [15]. Ibragimow, A., Walna, B. & Siepak, M. (2013). Physico-chemical parameters determining the variability of actually and potentially available fractions of heavy metals in fluvial sediments of the middle Odra River, Archives of Environmental Protection, 39, 2, pp. 3–16.
- [16]. Janyszek, S., Szczepaniak-Janyszek, M., Danielewicz, W. & Wrońska-Pilarek, D. (2002). In Bogdanka valley, Wydawnictwo Miejskie, Poznań 2002. (in Polish)
- [17]. Kabata-Pendias A. (2006). Trace elements in soil and plants. Fourth Edition, CRC Press, Boca Raton 2006.
- [18]. Karolczak, W. (1993). Acts of Sołacz Park in twentieth interwar, Wydawnictwo Miejskie, Poznań 1993. (in Polish)
- [19]. Lenssen, J., Menting, F. & van der Putten, W.C. (1999). Effects of sediment type and water level on biomass production of wetland plant species, Aquatic Botany, 64, pp. 151–165.
- [20]. Lis, J. & Pasieczna, A. (2005). Geochemical atlas of Poznan and surroundings: soils, water sediments, surface water. 1 : 100 000, Państwowy Instytut Geologiczny, Warszawa 2005. (in Polish)
- [21]. Liu, J., Dong, Y., Xu, H., Wang, D. & Xu, J. (2007). Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland, Journal of Hazardous Materials, 147, pp. 947–953.
- [22]. Mazej, Z. & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes, Chemosphere, 74, pp. 642–647.
- [23]. Mendelssohn, I.A., McKee, K.L. & Kong, T. (2001). A comparison of physiological indicators of sublethal cadmium stress in wetland plants, Environmental and Experimental Botany, 46(3), pp. 263–275.
- [24]. Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe, Desalination, 213, pp. 159–173.
- [25]. Muhammad, D., Dong, J., Chen, F., Zhang, G.P. & Wu, F.B. (2009). Comparison of EDTA and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia, International Journal of Phytoremediation, 11, pp. 558–574.
- [26]. Osmolovskaya, N. & Kurilenko, V. (2005). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds, Geophysical Research abstracts, 7, 10510.
- [27]. Peng, K., Luo, C., Lou, L., Li, X. & Shen, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment, Science of the Total Environment 392, pp. 22–29.
- [28]. Peverly, J.H., Surface, J.M. & Wang, T. (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment, Ecological Engineering, 5, pp. 21–35.
- [29]. Pułyk, M. & Tybiszewska, E. (1996). Lake quality status measured in 1990–1995 in Poznan voivodship, Biblioteka Monitoringu Środowiska, Poznań 1996. (in Polish)
- [30]. Quan, W.M., Han, J.D., Shen, A.L., Ping, X.Y., Qian, P.L., Shi, L.Y., Li, C.J. & Chen, Y.Q. (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophyte from Yangtze river estuary, Chiba, Marine Environmental Research, 64, pp. 21–37.
- [31]. Rai, P.K. (2008). Heavy-metal pollution in aquatic ecosystems and its phytoremediation using wetland plants. An eco-sustainable approach, International Journal of Phytoremediation 10(2), pp. 133–160.
- [32]. Rai, P.K. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes, Critical Reviews in Environmental Science and Technology, 39, pp. 697–753.
- [33]. Rai, P.K., Sharma, A.P. & Tripathi, B.D. (2007). Urban environment status in Singrauli Industrial region and its eco-sustainable management: A case study on heavy metal pollution. – In: Vyas, L. (ed.) Urban planning and environment: Strategies and Challenge (pp. 231–217). New York: McMillan Advances Research Series.
- [34]. Samecka-Cymerman, A. & Kempers, A.J. (2001). Concentrations of heavy metals and plant nutrients in water, sediment and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing stage of acidification, Science of Total Environment, 28, pp. 87–98.
- [35]. Sekabira, K., Oryem Origa, H., Basamba, T., Mutumba, G. & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries, International Journal of Environmental Science and Technology, 7(3), pp. 435–446.
- [36]. Sojka, M., Siepak, M. & Gnojska, E. (2013). Evaluation of heavy metal contents in sediments of initial part of retetion reservoir Stare Miasto at Powa river, Annual Set the Environment Protection, 15, pp. 1916–1928. (in Polish)
- [37]. Southichak, B., Nakano, K., Nomura, M. & Chiba, N. (2006). Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution, Water Research, 40, pp. 2295–2302.
- [38]. Staniszewski, R. (2014). Heavy metals in waters and sediments of rivers affected by brown coal mine waters, Polish Journal of Environmental Studies, 23(6), pp. 2217–2222.
- [39]. Staniszewski, R. & Jusik, S. (2013). Effect of dropping the mine water from surface lignate mining on river water quality, Annual Set the Environment Protection, 15, pp. 2652–2665. (in Polish)
- [40]. Stoltz, E. & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environmental and Experimental Botany, 47, pp. 271–280.
- [41]. Szyłak-Szydłowski, M. (2012). Effectiveness of removal of humic substances and heavy metals from landfill leachates during their pretreatment process in the SBR reactor, Ecological Chemistry and Engineering S, 19(3), pp. 405–413.
- [42]. Tomlinson, D., Wilson, J., Harris, C. & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index, Helgoländer Meeresuntersuchungen, 33(1–4), pp. 566–575.
- [43]. Tsuchija, T. (1991). Leaf span of floating-leaved plants, Vegetatio, 9, pp. 149–160.
- [44]. Vymazal, J., Kröpfelova, L., Švehla, J., Chrastny, V. & Štichová, J. (2009). Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater, Ecological Engineering, 35, pp. 303–309.
- [45]. Zarei, I., Pourkhabbaz, A. & Khuzestani, R.B. (2014). An assessment of metal contamination risk in sediments of Hara Biosphere Reserve, southern Iran with a focus on application of pollution indicators, Environmental Monitoring and Assessment,186, pp. 6047–6060, .
- [46]. Zhulidov, A.V. (1996). Heavy metals in Russian wetlands. In: van Straalen, N.M., Krivolutsky, D.A. (eds.). Bioindicator Systems for Soil Pollution (pp. 233–247). The Netherlands: Kluwer Academic Publishers.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c6d153f-6a86-41d8-a065-9de3119ad817