PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of IPM motor parameters in an 80-kW traction motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of the electromagnetic field and a performance analysis of a radial flux interior permanent magnet (IPM) machine designed to achieve 80 kW and 125 Nm for an electric and hybrid traction vehicle. The motor consists of a 12-slot stator with a three-phase concentrated winding as well as an 8-pole rotor with V-shaped magnets. Selected motor parameters obtained from an IPM prototype were compared with the design requirements. Based on the electromagnetic field analysis, the authors have indicated the parts of the motor that should be redesigned, including the structure of the rotor core, aimed at enhancing the motor’s performance and adjusting segmentation for magnet eddy current loss reduction. In addition, iron and PM eddy current losses were investigated. Moreover, transient analysis of current peak value showed that the current may increase significantly compared to steady-state values. A map of transient peak current load vs. torque load plotted against rotor speed was provided. Based on the numeric and analytical results of physical machine parameters, the authors indicate that collapse load during the motor’s operation may significantly increase the risk of permanent magnet (PM) demagnetization. It was also found that collapse load increases the transient torque, which may reduce the lifetime of windings.
Rocznik
Strony
467--481
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wz.
Twórcy
autor
  • Politechnika Opolska Poland
autor
  • Politechnika Opolska Poland
  • Politechnika Opolska Poland
  • Politechnika Opolska Poland
  • Auto Power Electronic Opole, Poland
Bibliografia
  • [1] Liu H., Chen X., Wang X., Overview and prospects on distributed drive electric vehicles and its energy saving strategy, Przegląd Elektrotechniczny, no. 7a, pp. 122–125 (2012).
  • [2] Soleimani J., Vahedi A., IPM synchronous motor for traction applications: Performance analysis considering airgap variation, Przegląd Elektrotechniczny, no. 12a, pp. 200–205 (2012).
  • [3] Glinka T., Bernatt J., Asynchronous slip-ring motor synchronized with permanent magnets, Archives of Electrical Engineering, vol. 66, no. 1, pp. 199–206 (2017).
  • [4] Lyskawinski W., Jedryczka C., Stachowiak D., Analysis of 6-pole IPM synchronous motor with tangential magnets using finite element method, Przegląd Elektrotechniczny, no. 4, pp. 34–37 (2016).
  • [5] Hongbo Q., Wenfei Y., Cunxiang Y., Ran Y., Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 66, no. 3, pp. 583–594 (2017).
  • [6] Nobuyoshi M., Front-and-rear-wheel-independent-drive-type electric vehicle (FRID EV) with compatible driving performance and safety, EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, vol. 1, no. 1, pp. 17–26 (2009), DOI: 10.3390/wevj3010017.
  • [7] Murata S., Innovation by in-wheel-motor drive unit, Vehicle System Dynamics, vol. 50, no. 6, pp. 807–830 (2012).
  • [8] Sun Y., Li M., Liao C., Analysis of wheel hub motor drive application in electric vehicles, MATEC web if Conferences 100, Vehicle System Dynamics, pp. 1–6 (2017), DOI: 10.1051/matecconf/201710001004.
  • [9] Hwang M.H., Han J.H., Kim D.H., Cha H.R., Design and analysis of rotor shapes for IPM motors in EV Power Traction Platforms, Energies, vol. 11, no. 10, pp. 1–12 (2018), DOI: 10.3390/en11102601.
  • [10] Lim S., Min S., Hong J.P., Optimal rotor design of IPM motor for improving torque performance considering thermal demagnetization of magnet, IEEE Transactions on Magnetics, vol. 51, no. 3, pp. 1–5 (2015).
  • [11] Kim Y.H., Lee S.S., Cheon B.C., Lee J.H., Study on optimal design of 210 kW traction IPMSM considering thermal demagnetization characteristics, AIP Advances, vol. 8, iss. 4. pp. 1–13 (2013), DOI: 10.1063/1.4994160.
  • [12] Fang L., Hong J.P., Flux-barrier design technique for improving torque performance of interior permanent magnet synchronous motofor driving compressor in HEV, 5th IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1486–1490 (2009), DOI: 10.1109/VPPC.2009.5289547.
  • [13] Mirazimi M.S., Kiyoumarsi A., Magnetic field analysis of Multi-flux-barrier interior permanentmagnet motors through conformal mapping, IEEE Transactions on Magnetics, vol. 53, no. 12, pp. 1–12 (2017).
  • [14] Lim S., Min S., Hong J.P., Shape design optimization of interior permanent magnet motor for vibration mitigation using level set method, International Journal of Automotive Technology, vol. 17, no. 5, pp. 917–922 (2016).
  • [15] Kim S.I., Lee G.H., Lee J.J., Hong J.P., Simple design approach for improving characteristics of interior permanent magnet synchronous motors for electric air-conditioner system in HEV, International Journal of Automotive Technology, vol. 11, no. 2, pp. 277–282 (2010).
  • [16] Liu X., Li Y., Liu Z., Ling T., Luo Z., Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles, Archives of Electrical Engineering, vol. 66, no. 2, pp. 279–293 (2017).
  • [17] Flux 3D, User’s Manual, Cedrat, France, January (2019).
  • [18] Mattavelli P., Tubiana L., Zigliotto M., Torque-ripple reduction in PM synchronous motor drives using repetitive current control, IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1423–1431 (2005).
  • [19] Awah C.C., Okoro O.I., Chikuni E., Cogging torque and torque ripple analysis of permanent magnet flux-switching machine having two stators, Archives of Electrical Engineering, vol. 68, no. 1, pp. 115–133 (2019).
  • [20] Yamazaki K., Fukushima Y., Sato M., Loss analysis of permanent-magnet motors with concentrated windings-variation of magnet eddy-current loss due to stator and rotor shapes, IEEE Transactions on Industry Applications, vol. 45, no. 4, pp. 1334–1342 (2009).
  • [21] Yamazaki K., Abe A., Loss analysis of interior permanent magnet motors considering carrier harmonics and magnet eddy currents using 3-D FEM, IEEE International Electric Machines and Drives Conference, May 3-5 Antalya, Turkey, pp. 904–909 (2007), DOI: 10.1109/IEMDC.2007.382794.
  • [22] Oh S.Y., Cho S.Y., Han J.H., Lee H.J., Ryu G.H., Kang D., Lee J., Design of IPMSM rotor shape for magnet eddy-current loss reduction, IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 841–844 (2014).
  • [23] Mellor P.H., Wrobel R., McNeill N., Investigation of proximity losses in a high speed brushless permanent magnet motor, IEEE Industry Applications Society 41st Annual Meeting, pp. 1514–1518 (2006), DOI: 10.1109/IAS.2006.256730.
  • [24] Wrobel R., Mlot A., Mellor P.H., Investigation of end-winding proximity losses in electromagnetic devices, XIX International Conference on Electrical Machines (ICEM), pp. 1–6 (2010), DOI: 10.1109/ICELMACH.2010.5608236.
  • [25] Constantin A., Fireteanu V., Leconte V., Effects of the short-circuit faults in the stator winding of induction motors and fault detection through the magnetic field harmonics, The International Symposium on Advanced Topics in Electrical Engineering, May 23-25, Bucharest, Romania, pp. 1–6 (2013), DOI: 10.1109/ATEE.2013.6563386.
  • [26] Rahnama M., Nazarzadeh J., Synchronous machine modelling and analysis for internal faults detection, IEEE International Electric machines and Drives Conference, Antalya, Turkey, pp. 1–6 (2007), DOI: 10.1109/IEMDC.2007.382812.
  • [27] Li G.J., Hloui S., Ojeda J., Hoang E., Lecrivain M., Gabsi M., Zhu Z.Q., Excitation winding shortcircuit in hybrid excitation permanent magnet motor, IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 567–575 (2014).
  • [28] Eklund P., Eriksson S., Winding design independent calculation method for short circuit current in permanent magnet synchronous machines, XIII International Conference on Electrical Machines (ICEM), October 25, Alexandroupolis, Greece, pp. 1–6 (2018), DOI: 10.1109/ICELMACH.2018.8506920.
  • [29] IEEE Recommended Practice for Calculating Short-Circuit Currents in Industrial and Commercial Power Systems, The Institute of Electrical and Electronics Engineers, Inc., new York, USA, ISBN 0738149322, 9780738149325 (2006).
  • [30] Fitzgerald A.E., Charles Kingsley Jr., Umans S., Electric Machinery. Fourth edition, McGraw-Hill Book Company, New York (1983).
  • [31] Husain I., Anwa M.N., Fault analysis of switched reluctance motor drives, IEEE International Electric Machines and Drives Conference (IEMDC), Seattle, WA, USA, pp. 41–43 (1999), DOI: 10.1109/IEMDC.1999.769021.
  • [32] Eilenberger A., Schrodl M., Sudden short-circuit analysis of a salient permanent magnet synchronous machine with buried magnets for traction applications, Proceedings of 14th International Power Electronics and Motion Control Conference (EPE-PEMC), Ohrid, Macedonia, pp. 117–120 (2010), DOI: 0.1109/EPEPEMC.2010.5606596.
  • [33] Najafi S., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Graduate and Research through Electrical and Computer Engineering, University of Windsor, Windsor, Ontario, Canada (2006).
  • [34] Chen Y., Zhang B., Minimization of the electromagnetic torque ripple caused by the coils inter-turn hort circuit in dual redundancy permanent magnet synchronous motors, Energies, vol. 10, no. 11, pp. 1–23 (2017), DOI: 10.3390/en10111798.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c69905b-d766-4659-8a9c-018c77d6e354
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.