PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison study of crystal and electronic structures for chalcopyrite (CuFeS2) and pyrite (FeS2)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chalcopyrite (CuFeS2) and pyrite (FeS2) are commonly associated with each other, and they both belong to semiconductor minerals. The difference in crystal and electronic structures is an important factor for their flotation separation. Using the density functional method (DFT) combined with Hubbard U correction, their crystal and electronic properties are comparatively studied. The calculated results suggest that the use of antiferromagnetic calculations and Hubbard U correction are very important to the accuracy of the chalcopyrite results. Antiferromagnetic calculations combined with a U value of 2.0 eV on chalcopyrite show a band gap of 0.53 eV, which is very consistent with the experimental results of ~0.5 eV. The density of states (DOS) and Mulliken bond population results indicate that stronger hybridization between Fe 3d and S 3p states in chalcopyrite than in pyrite leads to a stronger covalency of Fe-S bonds in chalcopyrite, causing a reduction in the spin magnetic moment (3.5 μB) from the ideal value. In addition, the greater covalency of bonds in chalcopyrite results in greater hydrophobicity of chalcopyrite than pyrite. The DOS results suggest that S has similar electronic properties in pyrite and chalcopyrite. The oxidation states of Fe and Cu ions in chalcopyrite are discussed based on the coordination field theory according to the calculation results, which confirms an oxidation state of Fe3+Cu1+S2.
Rocznik
Strony
100--111
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
  • Guangxi University
autor
  • Guangxi University
autor
  • Guangxi University
autor
  • Guangxi University
autor
  • Guangxi University
Bibliografia
  • ALLISON, S. A., GOOLD, L. A., NICOL, M. J., GRANVILLE, A., 1972. A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials, Metallurgical and Materials Transaction B. 3(10), 2613-2618.
  • ANISIMOV, V. I., 1995. First-principles calculations of electronic structure and spectra of strongly correlated systems: LDA +U method, Springer Series in Sloid-State Sciences. 119, 106-116.
  • ANISIMOV, V. I., ZAANEN, J., ANDERSEN, O. K., 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I, Physical Review B, Condensed Matter. 44(3), 943-954.
  • ARAMU, F., BRESSANI, T., MANCA, P., 1967. On the mössbauer effect of chalcopyrite, Ⅱ Nuovo Cimento B. 51, 370-375.
  • AUSTIN, I. G., GOODMAN, C. H. L., PENGELLY, A. E., 1956. New Semiconductors with the Chalcopyrite Structure, Journal of the Electrochemical Society. 103(11), 609-610.
  • BALLAL, M. M., MANDE, C., 1978. X-ray spectroscopic study of some chalcopyrites, Journal of Physics C Solid State Physics. 11(11), 837-848.
  • CHEN, J., 2015. The solide physics of sulphide minerals flotation, Central South University Press, 24-28.
  • CHEN, J.H., KE, B.L., LAN, L.H., LI, Y.Q., 2015. DFT and experimental studies of oxygen adsorption on galena surface bearing Ag, Mn, Bi and Cu impurities. Minerals Engineering. 71, 170-179.
  • CLARK, S. J., SEGALLII, M. D., PICKARDII, C. J., HASNIPIII, P. J., PROBERTIV, M. I. J., 2005. First principles methods using Castep, Zeitschrift Für Kristallographie. 220(5-6), 567-570.
  • CONEJEROS, S., ALEMANY, P., LLUNELL, M., MOREIRA, P. R., SANCHEZ, V., LLANOS, J., 2015. Electronic structure and magnetic properties of CuFeS2, Inorganic Chemistry. 54, 4840-4849.
  • DENG, Z.B., TONG, X., LO´PEZ VALDIVIESO, A., WANG, X., XIE, X., 2015. Collectorless flotation of marmatite with pine oil. Rare Metals.
  • DONNAY, G., CORLISS, L. M., DONNAY, J. D. H., ELLIOTT, N., HASTINGS, J. M., 1958. Symmetry of magnetic structures: magnetic structure of chalcopyrite, Physical Review. 112(6), 1917-1923.
  • EADINGTON, P., 1966. The oxidation of lead sulphide in aqueous suspension. University of London.
  • EDELBRO, R., SANDSTRÖM, A., PAUL, J., 2003. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite, Applied Surface Science. 206(1-4), 300-313.
  • ENGIN, T. E., POWELL, A. V., HULL, S., 2011. A high temperature diffraction-resistance study of chalcopyrite, CuFeS2, Journal of Solid State Chemistry. 184(8), 2272-2277.
  • ENNAOUI, A., FIECHTER, C., PETTENKOFER, N., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, CH., Tributsch, H., 1993. Iron disulfide for solar energy conversion, Solar Energy Materials & Solar Cells. 29(4), 289-370.
  • FUKUSHIMA, T., KATAYAMA-YOSHIDA, H., UEDE, H., TAKAWASHI, Y., NAKANISHI, A., SATO, K. J., 2014. Computational materials design of negative effective U system in hole-doped chalcopyrite CuFeS2, Journal of Physics: Condensed Matter. 26, 355502.
  • GOODMAN, C. H. L. and DOUGLAS, R. W., 1954. New semiconducting compounds of diamond type structure, Physica. 20(s7-12), 1107-1109.
  • HAMAJIMA, T., KAMBARA, T., GONDAIRA, K. I., OGUCHI, T., 1981. Self-consistent electronic structures of magnetic semiconductors by a discrete variational X calculation. Ⅲ. Chalcopyrite CuFeS2, Physical Review B. 24(6), 3349-3353.
  • HIROI, H., IWATA, Y., HORIGUCHI, K., SUGIMOTO, H., 2015. 960-mv open-circuit voltage chalcopyrite solar cell, IEEE Journal of Photovoltaics. 6(1), 309-312.
  • JAFFE, J. E., ZUNGER, A., 1983. Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Physical Review B. 28(10), 5822-5847.
  • KLEKOVKINA, V. V., GAINOV, R. R., VAGIZOV, F. G., DOOGLAV, A. V., GOLOVANEVSKIY, V. A., PEN’KOV, I. N., 2014. Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation, Optics and Spectroscopy. 116(6), 885-888,
  • KNIGHT, K. S., MARSHALL, W. G., ZOCHOWSKI, S. W., KEVIN, S., 2011. The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2, The Canadian Mineralogist. 49, 1012-1034.
  • KRADINOVA, L. V., POLUBOTKO, A. M., POPOV, V. V., PROCHUKHAN, V. D., SKORIUKIN, V. E., 1999. Novel zero-gap compounds, magnetics: CuFeS2 and CuFeTe2, Semiconductor Science & Technology. 8(8), 1616-1619.
  • LAZEWSKI, J., NEUMANN, H., PARLINSKI, K., 2004. Ab initio characterization of magnetic CuFeS2, Physical Review B. 70(19), 3352-3359.
  • LI, Y., CHEN, J., CHEN, Y., ZHAO, C., LEE, M. H., LIN, T. H., 2018. DFT +U study on the electronic structures and optical properties of pyrite and marcasite, Computational Materials Science. 150, 346-352.
  • LI, Y., HE, Q., CHEN, J., ZHAO, C., 2015. Electronic and chemical structures of pyrite and arsenopyrite, Mineralogical Magazine. 79 (7) 1779-1789.
  • LYUBUTIN, I. S., LIN, C. R., STARCHIKOV, S. S., 2013. Synthesis, structural and magnetic properties of self-organized single-crystalline nanobricks of chalcopyrite CuFeS2, Acta Materialia. 61(11), 3956-3962.
  • MARTÍNEZ-CASADO, R., CHEN, V. H. -Y., MALLIA, G., HARRISON, N. M., 2016. A hybrid-exchange density functional study of the bonding and electronic structure in bulk CuFeS2, The Journal of Chemical Physics. 144(18), 184702.
  • MARZARI, N., VANDERBILT, D., PAYNE, M. C., 1997. Ensemble density-functional theory for Ab initio molecular dynamics of metals and Finite-temperature insulators, Physical Review Letters. 79, 1337-1340.
  • MIKHLIN, Y., TOMASHEVICH, Y., TAUSON, V., VYALIKH, D., MOLODTSOV, S., SZARGAN, R., 2005. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2, Journal of Electron Spectroscopy and Related Phenomena. 142, 83-88.
  • MOMOSAKI J., 1953. Some wetting Phenomena concerning Flotation, Journal of the Mining and Metallurgical Institute of Japan. 69(781), 259-262.
  • MU, Y., PENG, Y., LAUTEN, R. A., 2018. The galvanic interaction between chalcopyrite and pyrite in the presence of lignosulfonate-based biopolymers and its effects on flotation performance, Minerals Engineering. 122, 91-98.
  • NAKAMURA, S., YAMAMOTO, A., 2001. Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells, Solar Energy Materials & Solar Cells. 65(1-4), 79-85.
  • OLIVEIRA, C. D., DUARTE, H. A., 2010. Disulphide and metal sulphide formation on the reconstructed (001) surface of chalcopyrite: A DFT study, Applied Surface Science. 257, 1319-1324.
  • PARK, S. J., CHO, Y., MOON, S. H., KIM, J. E., LEE, D. K., GWAK, J., KIM, J., KIM, D. K., MIN, B. K., 2014. A comparative study of solution-processed low- and high-band-gap chalcopyrite thin-film solar cells, Journal of Physics D: Applied Physics. 47(13) 135105.
  • PAULING, L. and BROCKWAY, L. O., 1932. The crystal structure of chalcopyrite CuFeS2, Zeitschrift Für Kristallographie - Crystalline Materials, 82, 1-6.
  • PEARCE, C. I., PATTRICK, R. A. D., VAUGHAN, D. J., HENDERSON, C. M. B., LAAN, G. V. D., 2006. Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics, Geochimica Et Cosmochimica Acta. 70(18), 4635-4642.
  • PRINCE, K. C., MATTEUCCI, M., KUEPPER, K., 2005. Core-level spectroscopic study of FeO and FeS2, Physical Review B. 71, 085102.
  • RAIS, A., GISMELSEED, A. M., AL-RAWAS, A. D., 2000. Magnetic properties of natural chalcopyrite at low temperature, Materials Letters. 46(6), 349-353.
  • RICHARDSON, P.E., O'DELL, C.S., 1985. Semiconducting characteristics of galena electrodes relationship to mineral flotation. Journal of Electrochemical Society. 132(6), 1350-1356.
  • SCHLEGEL, A. and WACHTER, P., 1976. Optical properties, phonons and electronic structure of iron pyrite (FeS2), Journal of Physics C: Solid State Physics. 9(17) 3363-3369.
  • SIEBENTRITT, S., IGALSON, M., PERSSON, C., LANY, S., 2010. The electronic structure of chalcopyrites—bands, point defects and grain boundaries, Progress in Photovoltaics: Research Applications. 18(6), 390-410.
  • SUN, W., HU, Y.H., QIU, G.Z., QIN, W.Q., 2004. Oxygen adsorption on pyrite (100) surface by density functional theory. Journal of Central South University of Technology. 11(004), 385-390.
  • TERANISHI, T., 1961. Magnetic and electric properties of chalcopyrite, Journal of The Physical Society of Japan. 16(10), 1881-1887.
  • TODD, E. C., SHERMAN, D. M., PURTON, J. A., 2003. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K- edge X-ray spectroscopy, Geochimica Et Cosmochimica Acta. 67(12), 2137-2146.
  • WOOLLEY, J. C., LAMARCHE, A. M., LAMARCHE, G., QUINTERO, M., SWAINSON, I. P., HOLDEN, T. M., 1996. Low temperature magnetic behaviour of CuFeS2 from neutron diffraction data, Journal of Magnetism and Magnetic Materials, 162(2-3), 347-354.
  • XI, P., WANG, D., LIU, W., SHI, C., 2019. DFT study into the influence of carbon material on the hydrophobicity of a coal pyrite surface, Molecules. 24(19), 3534.
  • XIE, X., LU, D., 1998. Energy band theory of solids, Fudan University Press, 1-26.
  • YU, L., LANY, S., KYKYNESHI, R., JIERATUM, V., RAVICHANDRAN, R., PELATT, B., ALTSCHUL, E., PLATT, H. A. S., WAGER, J. F., KESZLER, D. A., ZUNGER, A., 2011. Iron chaocogenide photovoltaic absorbers, Advanced Energy Materials. 1(5), 748-753.
  • ZHOU, M., GAO, X., CHENG, Y., CHEN, X., CAI, L., 2015. Structural, electronic, and elastic properties of CuFeS2: First-principles study, Applied Physics A. Materials Science & Processing. 118, 1145-1152.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c698aa4-43a1-41a8-9c12-8b3d73f3dc8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.