PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of unscented Kalman filter for clutch position control of automated manual transmission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an adaptive sliding mode controller (ASMC) is proposed for an electromechanical clutch position control system to apply in the automated manual transmission. Transmission systems undergo changes in parameters with respect to the wide range of driving condition, such as changing in friction coefficient of clutch disc and stiffness of diaphragm spring, hence, an adaptive robust control method is required to guarantee system stability and overcome the uncertainties and disturbances. As the majority of transmission dynamics variables cannot be measured in a cost-efficient way, a non-linear estimator based on unscented Kalman filter (UKF) is designed to estimate the state valuables of the system. Also, a non-linear dynamic model of the electromechanical actuator is presented for the automated clutch system. The model is validated with experimental test results. Numerical simulation of a reference input for clutch bearing displacement is performed in computer simulation to evaluate the performance of controller and estimator. The results demonstrate the high effectiveness of the proposed controller against the conventional sliding mode controller to track precisely the desired trajectories.
Rocznik
Strony
319--–339
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • Buin Zahra Higher Education Centre of Engineering and Technology, Imam Khomeini Interna- tional University, Qazvin, Iran
  • Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
  • School of Mechanical and Automotive Engineering, RMIT University, Melbourne, Australia
Bibliografia
  • [1] J. Horn, J. Bamberger, P. Michau, and S. Pindl. Flatness-based clutch control for automated manual transmissions. Control Engineering Practice, 11(12):1353–1359, 2003. doi: 10.1016/S0967-0661(03)00099-6.
  • [2] L. Glielmo, L. Iannelli, V. Vacca, and F.Vasca. Gearshift control for automated manual transmissions. IEEE/ASME Transactions on Mechatronics, 11(1):17–26, 2006. doi: 10.1109/T-MECH.2005.863369.
  • [3] Z. Zhong, G. Kong, Z. Yu, X. Chen, X. Chen, and X. Xin. Concept evaluation of a novel gear selector for automated manual transmissions. Mechanical Systems and Signal Processing, 31:316–331, 2012. doi: 10.1016/j.ymssp.2012.02.008.
  • [4] Y. Zhao, Z. Liu, L. Cai, W. Yang, J. Yang, and Z. Luo. Study of control for the automated clutch of an automated manual transmission vehicle based on rapid control prototyping. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(4):475–487, 2010. doi: 10.1243/09544070JAUTO1245.
  • [5] X. Song, Z. Sun, X. Yang, and G. Zhu. Modelling, control, and hardware-in-the-loop simulation of an automated manual transmission. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(2):143–160, 2010. doi: 10.1243/09544070JAUTO1284.
  • [6] S. Lin, S. Chang, and B. Li. Improving the gearshifts events in automated manual transmission by using an electromagnetic actuator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9):1548–1561, 2015. doi: 10.1177/0954406214546204.
  • [7] Z. Chen, B. Zhang, N. Zhang, H. Du G. Kong. Optimal preview position control for shifting actuators of automated manual transmission. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2):440–452, 2019. doi: 10.1177/0954407017745981.
  • [8] C.Y. Tseng and C.H. Yu. Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle. Mechanism and Machine Theory, 84:37–56, 2015. doi: 10.1016/j.mechmachtheory.2014.10.007.
  • [9] G. Kong, N. Zhang, and B. Zhang. Novel hybrid optimal algorithm development for DC motor of automated manual transmission. International Journal of Automotive Technology, 17(1):135–143, 2016. doi: 10.1007/s12239-016-0013-1.
  • [10] J. Oh, J. Kim, and S. Choi. Robust feedback tracking controller design for self-energizing clutch actuator of automated manual transmission. SAE International Journal of Passenger Cars-Mechanical Systems, 6(3):1510-1517, 2013. doi: 10.4271/2013-01-2587.
  • [11] A. Bagheri, S. Azadi, and A. Soltani. A combined use of adaptive sliding mode control and unscented Kalman filter estimator to improve vehicle yaw stability. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231(2):388–401, 2017. doi: 10.1177/1464419316673960.
  • [12] B. Gao, Y. Lei, A. Ge, H. Chen, and K. Sanada. Observer-based clutch disengagement control during gear shift process of automated manual transmission. Vehicle System Dynamics, 49(5):685–701, 2011. doi: 10.1080/00423111003681354.
  • [13] R. Temporelli, M. Boisvert, P. Micheau. Control of an electromechanical clutch actuator using a dual sliding mode controller: Theory and experimental investigations, IEEE/ASME Transactions on Mechatronics, 24(4):1674–1685, 2019. doi: 10.1109/TMECH.2019.2919673.
  • [14] S.A. Haggag, Sliding mode adaptive PID control of an automotive clutch-by-wire actuator. SAE International Journal of Passenger Cars-Mechanical Systems, 9(1):424–433, 2016. doi: 10.4271/2016-01-9106.
  • [15] J. Park and S. Choi. Optimization method of reference slip speed in clutch slip engagement in vehicle powertrain. International Journal of Automotive Technology, 22:55–67, 2021. doi: 10.1007/s12239-021-0007-5.
  • [16] Z. Sun, B. Gao, J. Jin, and K. Sanada. Modelling, analysis and simulation of a novel automated manual transmission with gearshift assistant mechanism. International Journal of Automotive Technology, 20:885–895, 2019. doi: 10.1007/s12239-019-0082-z.
  • [17] G. Xia, J. Chen, X. Tang, L. Zhao, and B. Sun. Shift quality optimization control of power shift transmission based on particle swarm optimization–genetic algorithm.Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(5)872–892, 2022. doi: 10.1007/s12239-019-0082-z
  • [18] M. Sharifzadeh, M. Pisaturo, and A. Senatore. Real-time identification of dry-clutch frictional torque in automated transmissions at launch condition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(2-3):586–598, 2020. doi: 10.1177/0954407019857268.
  • [19] X. Zhu, H. Zhang, J. Xi, J. Wang, and Z. Fang. Robust speed synchronization control for clutchless automated manual transmission systems in electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4):424–436, 2015. doi: 10.1177/0954407014546431.
  • [20] H. Ren, S. Chen, T. Shim, and Z. Wu. Effective assessment of tyre–road friction coefficient using a hybrid estimator. Vehicle System Dynamics, 52(8):1047–1065, 2014. doi: 10.1080/00423114.2014.918629
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c690753-319a-412c-8c0a-46a3753138c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.