PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present investigation is carried for the problem of boundary layer stagnation point flow and heat transfer of couple stress fluid containing nanoparticles and flowing over an exponentially stretching surface in a porous medium. The governing equations of couple stress fluid model for velocity, temperature and nanoparticle profiles are given under boundary layer approach. The nonlinear partial differential equations are simplified by using similar transformations. The analytical solutions of simplified equations are found with the help of homotopy analysis method. The convergence of the HAM solutions has been discussed by plotting - curves and also through homotopy pade approximation. The physical features of pertinent parameters have been discussed through graphs.
Rocznik
Strony
122--132
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
autor
  • Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
autor
  • Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
Bibliografia
  • [1] H. Rosali, A. Ishak, I. Pop, Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium, Int Commun Heat Mass Tran 38 (2011) 1029–1032.
  • [2] I.-C. Liu, Flow and heat transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field, Int J Non-Lin Mech 40 (2005) 465–474.
  • [3] S. Nadeem, M. Awais, Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity, Physics Letters A 372 (2008) 4965–4972.
  • [4] S. Nadeem, M. Hussain, M. Naz, Mhd stagnation flow of a micropolar fluid through a porous medium, Meccanica 45 (2010) 869–880.
  • [5] M. E. Ali, The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation, International Journal of Thermal Sciences 46 (2007) 157–163.
  • [6] E. M. A. Elbashbeshy, M. A. A. Bazid, Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection, App Math Comp 158 (2004) 799–807.
  • [7] H. Rosali, A. Ishak, I. Pop, Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction, Int. Commun. Heat Mass Transf. 39 (6) (2012) 826–829.
  • [8] M. Hameed, S. Nadeem, Unsteady mhd flow of a nonnewtonian fluid on a porous plate, Journal of Mathematical Analysis and Applications 325 (2007) 724–733.
  • [9] C. Yang, A. Nakayama, W. Liu, Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium, Int. J. Ther. Sci. 54 (2012) 98–108.
  • [10] M. Z. Salleh, R. Nazar, I. Pop, Boundary layer flow and heat transfer over a stretching sheet with newtonian heating, J Taiwan Ins Che Eng 41 (2010) 651–655.
  • [11] A. V. Kuznetsov, D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences 49 (2) (2010) 243–247.
  • [12] S. Nadeem, A. Rehman, M. E. Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical slender cylinder, in: Proc Ins Mec Eng Part N, J Nanoeng Nanosys JNN301R2, J Nanoeng Nanosys.
  • [13] S. Ahmad, I. Pop, Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids, Int Commun Heat Mass Tran 37 (2010) 987–991.
  • [14] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int J Heat Mass Transfer 43 (2000) 3701–3707.
  • [15] S. Nadeem, A. Rehman, K. Vajravelu, J. Lee, C. Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, article id 378259, Mathematical Problems in Engineering 2012.
  • [16] S. M. S. Murshed, K. C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences 47 (5) (2008) 560–568.
  • [17] N. B. Naduvinamani, P. S. Hiremath, G. Gurubasavaraj, Effect of surface roughness on the couple-stress squeeze film between a sphere and a flat plate, Tribology International 38 (2005) 451–458.
  • [18] A. Noghrehabadi, R. Pourrajab, M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids water nanofluids over an isothermal stretching sheet with suction or injection, J. Comp. App. Res. Mech. Eng. 1 (2012) 35–47.
  • [19] A. Noghrehabadi, M. Ghalambaz, A. Ghanbarzadeh, Heat transfer of magetohydrodynamic viscous nanofluids over an isothermal stretching sheet, J. Ther. Heat Tran. 2012 (4) (26) 686–689.
  • [20] A. Noghrehabadi, M. Ghalambaz, M. Ghalambaz, A. Ghanbarzadeh, Comparing thermal enhancement of ag-water and sio2-water nanofluids over an isothermal stretching sheet with suction or injection, J. Comp. App. Res. Mech. Eng. 2 (1) (2012) 35–47.
  • [21] S. Nadeem, A. Rehman, M. Y. Malik, Boundary layer stagnation-point flow of third grade fluid over an exponentially stretching sheet, Brazilian Journal of Chemical Engineering.
  • [22] S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, Chapman & Hall/CRC Press, Boca Raton, 2003.
  • [23] R. Ellahi, E_ects of the slip boundary condition on nonnewtonian flows in a channel, Communications in Nonlinear Science and Numerical Simulation 14 (4) (2009) 1377–1384.
  • [24] A. Rehman, S. Nadeem, Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder, 124701, Chinese Physics Letters 29 (12). doi:10.1088/0256-307X/29/12/124701.
  • [25] S. Nadeem, A. Rehman, C. Lee, J. Lee, Boundary layer flow of second grade fluid in a cylinder with heat transfer, article id 640289, Mathematical Problems in Engineering 2012. doi:10.1155/2012/640289.
  • [26] R. Ellahi, A. Raiz, Analytical solution for mhd flow in a third grade fluid with variable viscosity, Math Comp Mod 52 (2010) 1783–1793.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c619848-bfeb-44a0-acd4-005ab8a82fad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.