PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A new Easton theorem for supercompactness and level by level equivalence

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We establish a new Easton theorem for the least supercompact cardinal κ that is consistent with the level by level equivalence between strong compactness and supercompactness. This theorem is true in any model of ZFC containing at least one supercompact cardinal, regardless if level by level equivalence holds. Unlike previous Easton theorems for supercompactness, there are no limits on the Easton functions F used, other than the usual constraints given by Easton’s theorem and the fact that if δ < κ is regular, then F(δ) < κ In both our ground model and the model witnessing the conclusions of our theorem, there are no restrictions on the structure of the class of supercompact cardinals.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics, Baruch College of CUNY, New York, NY, 10010, U.S.A.
  • The CUNY Graduate Center, Mathematics, 365 Fifth Avenue, New York, NY, 10016, USA
Bibliografia
  • [1] A. Apter, An Easton theorem for level by level equivalence, Math. Logic Quart. 51 (2005), 247–253.
  • [2] A. Apter, More Easton theorems for level by level equivalence, Colloq. Math. 128 (2012), 69–86.
  • [3] A. Apter, On the non-extendibility of strongness and supercompactness through strong compactness, Fund. Math. 174 (2002), 87–96.
  • [4] A. Apter and J. Cummings, Identity crises and strong compactness II: Strong cardinals, Arch. Math. Logic 40 (2001), 25–38.
  • [5] A. Apter and S. Shelah, On the strong equality between supercompactness and strong compactness, Trans. Amer. Math. Soc. 349 (1997), 103–128.
  • [6] J. D. Hamkins, Gap forcing, Israel J. Math. 125 (2001), 237–252.
  • [7] J. D. Hamkins, Gap forcing: Generalizing the Lévy–Solovay theorem, Bull. Symbolic Logic 5 (1999), 264–272.
  • [8] T. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
  • [9] K. Kunen, Set Theory: An Introduction to Independence Proofs, Stud. Logic Found. Math. 102, North-Holland, Amsterdam, 1980.
  • [10] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, Israel J. Math. 5 (1967), 234–248.
  • [11] T. Menas, Consistency results concerning supercompactness, Trans. Amer. Math. Soc. 223 (1976), 61–91.
  • [12] T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327–359.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c5f00e4-8ba7-4e05-be17-eb02e3f2c3b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.