PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensemble learning approach to enhancing binary classification in Intrusion Detection System for Internet of Thing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Internet of Things (IoT) has experienced significant growth and plays a crucial role in daily activities. However, along with its development, IoT is very vulnerable to attacks and raises concerns for users. The Intrusion Detection System (IDS) operates efficiently to detect and identify suspicious activities within the network. The primary source of attacks originates from external sources, specifically from the internet attempting to transmit data to the host network. IDS can identify unknown attacks from network traffic and has become one of the most effective network security. Classification is used to distinguish between normal class and attacks in binary classification problem. As a result, there is a rise in the false positive rates and a decrease in the detection accuracy during the model's training. Based on the test results using the ensemble technique with the ensemble learning XGBoost and LightGBM algorithm, it can be concluded that both binary classification problems can be solved. The results using these ensemble learning algorithms on the ToN IoT Dataset, where binary classification has been performed by combining multiple devices into one, have demonstrated improved accuracy. Moreover, this ensemble approach ensures a more even distribution of accuracy across each device, surpassing the findings of previous research.
Twórcy
autor
  • Computer Sciences, Universitas Muhammadiyah Riau, Pekanbaru, Riau Indonesia
  • Faculty of Data Science and Computing, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
  • Faculty of Data Science and Computing, Universiti Malaysia Kelantan
  • Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
autor
  • Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
  • Universitas Muhammadiyah Riau, Pekanbaru, Riau Indonesia
  • Faculty of Data Science and Computing, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
Bibliografia
  • [1] M. A. Khan et al., “Voting Classifier-Based Intrusion Detection for IoT Networks,” pp. 313-328, 2022, https://doi.org/10.1007/978-981-16-5559-3_26.
  • [2] A. Azmoodeh, A. Dehghantanha, and K. K. R. Choo, “Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning,” IEEE Trans. Sustain. Comput., vol. 4, no. 1, pp. 88-95, 2019, https://doi.org/10.1109/TSUSC.2018.2809665.
  • [3] M. M. Islam, A. Rahaman, and M. R. Islam, “Development of Smart Healthcare Monitoring System in IoT Environment,” SN Comput. Sci., vol. 1, no. 3, pp. 1-11, 2020, https://doi.org/10.1007/s42979-020-00195-y.
  • [4] G. Mois, S. Folea, and T. Sanislav, “Analysis of Three IoT-Based Wireless Sensors for Environmental Monitoring,” IEEE Trans. Instrum. Meas., vol. 66, no. 8, pp. 2056–2064, 2017, https://doi.org/10.1109/TIM.2017.2677619.
  • [5] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial internet of things: Challenges, opportunities, and directions,” IEEE Trans. Ind. Informatics, vol. 14, no. 11, pp. 4724-4734, 2018, https://doi.org/10.1109/TII.2018.2852491.
  • [6] L. Nie et al., “Intrusion Detection in Green Internet of Things: A Deep Deterministic Policy Gradient-Based Algorithm,” IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 778-788, 2021, https://doi.org/10.1109/TGCN.2021.3073714.
  • [7] G. Falco, C. Caldera, and H. Shrobe, “IIoT Cybersecurity Risk Modeling for SCADA Systems,” IEEE Internet Things J., vol. 5, no. 6, pp. 4486-4495, 2018, https://doi.org/10.1109/JIOT.2018.2822842.
  • [8] E. Farzadnia, H. Shirazi, and A. Nowroozi, “A novel sophisticated hybrid method for intrusion detection using the artificial immune system,” J. Inf. Secur. Appl., vol. 58, no. February, p. 102721, 2021, https://doi.org/10.1016/j.jisa.2020.102721.
  • [9] A. H. Azizan et al., “A machine learning approach for improving the performance of network intrusion detection systems,” Ann. Emerg. Technol. Comput., vol. 5, no. Special issue 5, pp. 201-208, 2021, https://doi.org/10.33166/AETiC.2021.05.025.
  • [10] N. Moustafa, M. Ahmed, and S. Ahmed, “Data Analytics-enabled Intrusion Detection: Evaluations of ToN IoT Linux Datasets,” in Proceedings - 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020, 2020, pp. 727-735, https://doi.org/10.1109/TrustCom50675.2020.00100.
  • [11] J. Liu, Y. Gao, and F. Hu, “A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM,” Comput. Secur., vol. 106, p. 102289, 2021, https://doi.org/10.1016/j.cose.2021.102289.
  • [12] A. Kumar, A. Abdelhadi, and C. Clancy, “Novel anomaly detection and classification schemes for Machine-to-Machine uplink,” in Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2019, pp. 1284-1289, https://doi.org/10.1109/BigData.2018.8622142.
  • [13] B. Cao, C. Li, Y. Song, and X. Fan, “Network Intrusion Detection Technology Based on Convolutional Neural Network and BiGRU,” Comput. Intell. Neurosci., vol. 2022, 2022, https://doi.org/10.1155/2022/1942847.
  • [14] P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks,” Comput. Commun., vol. 166, pp. 110-124, 2021, https://doi.org/https://doi.org/10.1016/j.comcom.2020.12.003.
  • [15] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. N. Anwar, “TON-IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems,” IEEE Access, vol. 8, pp. 165130-165150, 2020, https://doi.org/10.1109/ACCESS.2020.3022862.
  • [16] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset,” IEEE Access, vol. 9. pp. 142206-142217, 2021, https://doi.org/10.1109/ACCESS.2021.3120626.
  • [17] N. Mane, A. Verma, and A. Arya, “A Pragmatic Optimal Approach for Detection of Cyber Attacks using Genetic Programming,” in 20th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2020 - Proceedings, 2020, pp. 71-76, https://doi.org/10.1109/CINTI51262.2020.9305844.
  • [18] A. O. Alzahrani and M. J. F. Alenazi, “Designing a network intrusion detection system based on machine learning for software defined networks,” Futur. Internet, vol. 13, no. 5, 2021, https://doi.org/10.3390/fi13050111.
  • [19] P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks,” Comput. Commun., vol. 166, pp. 110-124, 2021, https://doi.org/10.1016/j.comcom.2020.12.003.
  • [20] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset,” IEEE Access, vol. 9, no. October, pp. 142206-142217, 2021, https://doi.org/10.1109/ACCESS.2021.3120626.
  • [21] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient intrusion detection system based on feature selection and ensemble classifier,” Comput. Networks, vol. 174, p. 107247, 2020, https://doi.org/10.1016/j.comnet.2020.107247.
  • [22] H. Jiang, Z. He, G. Ye, and H. Zhang, “Network Intrusion Detection Based on PSO-Xgboost Model,” IEEE Access, vol. 8, pp. 58392-58401, 2020, https://doi.org/10.1109/ACCESS.2020.2982418.
  • [23] X. Ma, J. Sha, D. Wang, Y. Yu, Q. Yang, and X. Niu, “Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning,” Electron. Commer. Res. Appl., vol. 31, pp. 24-39, 2018, https://doi.org/10.1016/j.elerap.2018.08.002.
  • [24] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785-794, 2016, https://doi.org/10.1145/2939672.2939785.
  • [25] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision tree,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 3147-3155, 2017.
  • [26] G. Pietropolli, L. Manzoni, A. Paoletti, and M. Castelli, “Combining Geometric Semantic GP with Gradient-Descent Optimization,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, vol. 13223 LNCS, pp. 19-33, https://doi.org/10.1007/978-3-031-02056-8_2.
  • [27] H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18-26, 2021, https://doi.org/10.34148/teknika.v10i1.311.
  • [28] A. Agarwal, P. Sharma, M. Alshehri, A. A. Mohamed, and O. Alfarraj, “Classification model for accuracy and intrusion detection using machine learning approach,” PeerJ Comput. Sci., vol. 7, pp. 1-22, 2021, https://doi.org/10.7717/PEERJ-CS.437.
  • [29] X. Liu et al., “NADS-RA: Network Anomaly Detection Scheme Based on Feature Representation and Data Augmentation,” IEEE Access, vol. 8, pp. 214781-214800, 2020, https://doi.org/10.1109/ACCESS.2020.3040510.
  • [30] P. Henrique et al., “Impact of Feature Selection Methods on the Classification of DDoS Attacks using XGBoost,” J. Commun. Inf. Syst., vol. 36, no. 1, 2021.
  • [31] I. Benmessahel, K. Xie, and M. Chellal, “A new evolutionary neural networks based on intrusion detection systems using multiverse optimization,” Appl. Intell., vol. 48, no. 8, pp. 2315-2327, 2018, https://doi.org/10.1007/s10489-017-1085-y.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c5a77d6-1004-432d-bead-cb8e20b29424
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.