PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recovery of valuable metals from metallurgical slag disposals is a promising option to protect natural resources, limited due to technology development and increased consumption. The Ad-hoc Working Group on Defining Critical Raw Materials within the Raw Materials Supply Group has proposed a list of critical elements which have the greatest economic importance and meet the requirements of sustainable development in Europe. The goal of this study was to examine steelmaking- and blast-furnace slags from metallurgical processes to determine concentrations of elements of the greatest criticality for Poland, e.g. Nb, Ta and REE, and to discuss the viability of their recovery. Slag analyses indicate enrichment of REE relative to UCC, NASC and average chondrite compositions in blast-furnace slags and Nb and Ta in steelmaking slags. To make recovery of these critical elements reasonable and profitable, it is recommended that they be recovered together with other useful raw materials.
Słowa kluczowe
Czasopismo
Rocznik
Strony
15--28
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
  • Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Krakow, Poland
autor
  • AGH-University of Science and Technology, Kraków, Mickiewicza 30, 30-059, Poland
Bibliografia
  • Allegrini, E., Maresca A., Olsson M. E., Holtze M. S., Boldrin, A., & Astrup, T. F. (2014). Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management, 34, 1627-1636. DOI:10.1016/j.wasman.2014.05.003.
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013a).Recycling of rare earths: a critical review. Journal of Cleaner Production 51, 1-22. DOI:10.1016/j.jclepro.2012.12.037.
  • Binnemans, K., Pontikes, Y., Jones, P. T., Van Gerven, T., & Blanpain, B. (2013b). Recovery of rare earths from industrial waste residues: a concise review. In: Malfliet, A., Jones, P. T., Binnemans, K., et al. (Eds.), Proceedings of the 3rd International Slag Valorisation Symposium, 19-30 March 2013. KU LEUVEN, Leuven, Belgium, pp. 191-205.
  • Bozkurt, S., Moreno, L., & Neretnieks, I. (1999). Long-term fate of organics in waste deposits and its effect on metal release. Science of the Total Environment, 228(2-3), 135-152. DOI: 10.1016/S0048-9697(99)00047-9.
  • Cossu, R., Hogland, W., & Salerni, E. (1996). Landfill mining in Europe and the USA. ISWA Year Book 1996, 107-114.
  • Critical raw materials for the EU. (2010). Report of the Ad-hoc Working Group on defining critical raw materials. Raw Materials Supply Group, Brussels, June 2010.
  • Evans, A. M. (1993). Ore geology and industrial minerals (3rd edition). Blackwell (1993).
  • Geiseler, J. (1996). Use of steel works slag in Europe. Waste Management, 16, 59-63. DOI:10.1016/S0956-053X(96)00070-0.
  • Graedel, T. E., Allwood, J., Birat, J., Buchert, M., Hagelüken, C., Reck, B. K., Sibley, S. F., & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology, 15(3), 355-366. DOI:10.1111/j.1530-9290.2011.00342.x.
  • Gromet, P. L., Dymek, R. F., Haskin, L. A., & Korote, R. L. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.
  • Gutiérrez-Gutiérrez, S. C., Coulon, F., Jiang, Y., & Wagland, S. (2015). Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Management, 42, 128-136. DOI: 10.1016/j.wasman.2015.04.024.
  • Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6(2), 119-124. DOI: 10.1007/s10163-003-0110-x.
  • Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25, 25-35. DOI: 10.1016/j.wasman.2004.08.009.
  • Janke, D., Savov, L., & Vogel, M. E. (2006). Secondary materials in steel production and recycling. A von Gleich et al. (eds). Sustainable Metals Management (Chapter 11), 313-334. Netherlands: Springer.
  • Jarosiński, A. (2016). Możliwości pozyskiwania metali ziem rzadkich w Polsce. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 92, 75-88. [in Polish].
  • Jonczy, I. (2014). Mineralogical and chemical study of metallurgical slags from the dump and current production in Gliwice-Łabędy as well as the dump influence on soil. Gliwice 2014. [in Polish].
  • Jonczy, I., & Lata, L. (2013). Charakterystyka składu chemicznego żużli konwertorowych i wielkopiecowych. Górnictwo i Geologia, 8(4), 51-61. [in Polish].
  • Juenger, M. C. G., Monteiro, P. J. M., & Gartner, E. M. (2006). In situ imaging of ground granulated blast furnace slag hydratation. Journal of Material Science, 41, 7074-7081. DOI: 10.1007/s10853-006-0941-7.
  • Kasina, M., Kowalski, P. R., & Michalik, M. (2014). Mineral carbonation of metallurgical slags. Mineralogia, 45(1-2), 27-45. DOI: 10.1515/mipo-2015-0002.
  • Kawasaki, A., Kimura, R., & Arai, S. (1998). Rare earth elements and other trace elements in wastewater treatment sludges. Soil Science and Plant Nutrition, 44(3), 433-441. DOI: 10.1080/00380768.1998.10414465.
  • Kelmendi, S., & Azemi, F. (2011). Comparative economic elements of mineral resources in the context of international management. Journal of economic and politics of Transition. Transition - ISSN 1512-5785.
  • Kulczycka, J., Kowalski, Z., Smol, M., & Wirth, H. (2016). Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste ̶ case study of the WIZ_OW Chemical Plant (Poland). Journal of Cleaner Production, 113, 345-354. DOI: 10.1016/j.jclepro.2015.11.039.
  • Lie, A., & Østergaard, C. (2014). The Fen Rare Earth Element deposit, Ulefoss, South Norway. Executive summary regarding deposit significance Compiled and prepared by 21st North, Svendborg 6th of June 2014 in commission for REE Minerals, Norway.
  • Liu Y., & Naidu R. (2014). Hidden values in bauxite residue (red mud): Recovery of metals. Waste Management, 34, 2662–2673. DOI: 10.1016/j.wasman.2014.09.003.
  • Małoszowski, M. (2009). Mineral and chemical composition of metallurgical slags from Kuźnice and their effect on environment [in Polish]. Master Thesis, Jagiellonian University.
  • Massari, M., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36-43. DOI: 10.1016/j.resourpol.2012.07.001.
  • Meyer, L., & Bras, B. (2011). Rare earth metal recycling, 2011. IEEE International Symposium on Sustainable Systems and Technology, ISSST 2011, 16 May 2011 through 18 May 2011, Chicago, IL.
  • Morf, L. S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Lorenzo, F. D., & Böni, D. (2013). Precious metals and rare earth elements in municipal solid waste - Sources and fate in a Swiss incineration plant. Waste Management, 33(3), 634-644. DOI: 10.1016/j.wasman.2012.09.010.
  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21, 285–293. DOI: 10.1016/S0956-053X(00)00102-1.
  • Mueller, S.R., Wäger, P. A., Widmer, R., & Williams, I. D. (2015). A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Waste Management, 45, 226-234. DOI: 10.1016/j.wasman.2015.03.038.
  • Quaghebeur, M., Laenen, B., Nielsen, P., Spooren, J. & Geysen, D. (2010). Valorisation of materials within enhanced landfill mining: What is feasible? In the context of the transition to Sustainable Materials Management (SMM) and Enhanced Waste Management (EWM), Belgium, 4-6 October 2010.
  • Report on critical raw materials for the EU. (2014). Report of the Ad-hoc Working Group on defining critical raw materials, May 2014.
  • Statistical yearbook of the Republic of Poland 2014. (2014). Central Statistical Office. ISSN 1506-0632.
  • Schmidt, R. A., Smith, R. H., Lasch, J. E., Mosen, A. W., Olehy, D. A., & Vasilevshis, J. (1963). Abundances of Fourteen Rare-Earth Elements, Scandium, and Yttrium in Meteoritic and Terrigenous Matter. Geochimica et Cosmochimica Acta, 27(6), 577-622. DOI: 10.1016/0016-7037(63)90014-0.
  • Schulze, R., & Buchert, M. (2016). Estimates of global REE recycling potentials from NdFeB magnet material. Resources, Conservation and Recycling, 113, 12-27. DOI: 10.1016/j.resconrec.2016.05.004.
  • Silberglitt, R., Bartis, J. T., Chow, B. G., An, D. L., & Brady, K. (2013). Critical Materials. Present Danger to U.S. Manufacturing. Library of Congress Cataloging-in-Publication. RAND Corporation. ISBN: 978-0-8330-7883-4.
  • Smakowski, T. J. (2011). Surowce mineralne – krytyczne czy deficytowe dla gospodarki UE i Polski. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk, 81, 59-68. [in Polish].
  • Sommer P., Rotter V.S., & Ueberschaar, M. (2015). Battery related cobalt and REE flows in WEEE treatment. Waste Management, 45, 298-305. DOI: 10.1016/j.wasman.2015.05.009.
  • Taylor, S. R., & McLennan S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell Scientific Publications.
  • Van der Zee, D. J., Achterkamp, M. C., & de Visser, B. J. (2004). Assessing the market opportunities of landfill mining. Waste Management, 24, 795-804. DOI: 10.1016/j.wasman.2004.05.004.
  • Zhang, F., Yamasaki, S., & Kimura, K. (2001). Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environment International, 27(5), 393-398. DOI: 10.1016/S0160-4120(01)00097-6.
  • Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: A screening study. Science of the Total Environment, 461-462, 774-780. DOI: 10.1016/j.scitotenv.2013.05.040.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c5a0545-57c6-45a6-ae61-2317833557bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.