Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM) and Electrochemical (AECM) Machining.
Wydawca
Czasopismo
Rocznik
Tom
Strony
81--90
Opis fizyczny
Bibliogr. 28 poz., rys. wykr. zdj.
Twórcy
autor
- Cracow University of Technology, Institute of Production Engineering, Poland
autor
- Cracow University of Technology, Institute of Production Engineering, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Cracow University of Technology, Institute of Production Engineering, Poland
Bibliografia
- [1] Lauwers B. et al., Hybrid processes in Manufacturing, CIRP Annals – Manufacturing Technology, 63, 561–583, 2014.
- [2] Lauwers B., Surface Integrity in Hybrid Machining Processes, Procedia Engineering, 19, 241–251, 2011.
- [3] Hascalik A., Cydas U., A comparative study of surface integrity of Ti-6Al-4V Alloy machined by EDM and AECG, Journal of Materials Processing Technology, 190, 173–180, 2007.
- [4] Skoczypiec S., Ruszaj A., A sequential electrochemical – electrodischarge process for microparts manufacturing, Precision Engineering, 38, 3, 680–690, July 2014.
- [5] Liang Z., Wu Y., Wang X., Zhao W., A New TwoDimensional Ultrasonic Assisted Grinding Method and Its Fundamental Performance in Monocrystal Silicon Machining, International Journal of Machine Tools & Manufacture, 50, 728–736, 2010.
- [6] Klocke F. et al., Abrasive machining of advanced aerospace alloys and composites, CIRP Annals – Manufacturing Technology, 64, 581–604, 2015.
- [7] Zhao B., Wu Y.G., Jiao G.F., Research on micro-mechanism of nanocomposite ceramic in twodimensional ultrasound grinding, Key Engineering Materials, 304, 344–348, 2008.
- [8] Bhaduri D. et al., A study on ultrasonic assisted creep feed grinding of Nickel based superalloys, Procedia CIRP, 1, 359–364, 2012.
- [9] Gao G.F. et al., Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics, Journal of Materials Processing Technology, 209, 32–37, 2009.
- [10] Ghahramani M. et al., Ultrasonic-Assisted Grinding of Ti6A14V Alloy, Procedia CIRP, 1, 353–358, 2012.
- [11] Liang Z. et al., Experimental study on brittle-ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystalline sapphire using single abrasive grain, Journal of Materials Processing Technology, 71, 41–51, 2013.
- [12] Mohsen G.N., Movahhedy M.R., Javad A., Ultrasonic-Assisted Grinding of Ti6Al4V Alloy, Procedia CIRP, 1, 353–358, 2012.
- [13] Yildiz Y., Nalbandt M., A review of cryogenic cooling in machining processes, International Journal of Machine Tools & Manufacture, 48, 947–964, 2008.
- [14] Manimaran G., Kumar M.P., Effect OF cryogenic cooling and sol-gel alumina Wheel on grinding performance of AISI 316 stainless steel, Archives of Civil and Mechanical Engineering, 13, 304–312, 2013.
- [15] Manimaran G. et al., Influence of cryogenic cooling l on surface grinding of stainless steel 316, Cryogenics, 59, 76–83, 2014.
- [16] Ichida Y. et al., Material removal mechanism in non contact ultrasonic abrasive machining, Wear, 258, 107–114, 2005.
- [17] Chen Y.F., Lin Y.Ch., Surface modification of AlZn-Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into dielectric, Journal of Materials Processing Technology, 209, 4343–4350, 2009.
- [18] Prihandana G.S., et al., Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM process – Taguchi approach, International Journal of Machine Tools & Manufacture, 49, 1035–1041, 2009.
- [19] Wong Y.S. et al., Near-mirror phenomenon in EDM using powder-mixed dielectric, Journal of Materials Processing Technology, 79, 30–40, 1998.
- [20] Kozak J., Oczoś K.E., Selected problems of abrasive hybrid machining, Journal of Materials Processing Technology, 109, 360–366, 2001.
- [21] Satyarthi M.K., Pandey P.M., Modelling of material removal rate in electric discharge grinding process, International Journal of Machine Tools & Manufacture, 74, 65–73, 2013.
- [22] Shrivastava P.K, Dubey A.K., Experimental modeling and optimization of electric discharge diamond face grinding of metal matrix composite, International Journal of Advanced Manufacturing Technology, 69, 2471–2480, 2013.
- [23] Menesis I., Koshy P., Assessment of abrasion assisted material removal in wire EDM, CIRP Annals – Manufacturing Technology, 57, 195–198, 2008.
- [24] Koshy P., Jain G.K., Lal G.K., Grinding of cemented carbide with electrical spark assistance, Journal of Materials Processing Technology, 72, 61–68, 1997.
- [25] Ruszaj A. et al., The Investigations Aiming to Increase the Flexibility of Electrochemical Grinding, International Journal of Electrical Machining, 3, 25–32, January 1998.
Uwagi
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c58efee-0444-44aa-89b1-ea164f026785