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INTRODUCTION 

A truck crane is a lifting and transporting ma-
chine, serving as an important means of mechanizing 
production processes across all sectors of the nation-
al economy. With the rapid development of industry, 
the need to enhance labor productivity necessitates 
continuous development and improvement of crane 
technology. The construction industry relies heav-
ily on cranes. High-rise buildings and large blocks 
cannot be constructed without mechanization of 
the lifting and transportation process. Fundamental 
changes in construction technology, such as the use 
of new materials and building blocks, have played a 
decisive role in transforming construction practices.

Similar to other cranes, a truck crane can lift, 
transport, and manipulate loads. This capability 
enlarges the workspace for the crane and allows 
for rapid relocation. The ability to perform vari-
ous motions using different power units makes the 
truck crane a dynamic object. This dynamic nature, 
combined with the complexity of tasks and the in-
volvement of multiple workers, increases the risk of 

accidents. These accidents can result in significant 
material losses and potentially harm workers.

The problem of modeling the dynamics of a 
truck crane is complex and requires the consid-
eration of several factors in building the model. 
These factors include the fundamental and addi-
tional units of the crane, as well as the system en-
compassing most of the forces and masses involved 

Dynamic analysis of truck cranes has been ex-
plored and reported in many works. Hong and Shah 
[1] studied the problem of dynamics and control of 
industrial cranes, including truck cranes. In their dy-
namic model, the stages are assumed to be rigid, and 
lifting motion is ignored. Abdel-Rahman et al. [2] in-
troduced an overview of previous studies on this is-
sue but did not mention the ground and cable distor-
tion. Cekus et al. [3] proposed a mathematical model 
to analyze the movement of a load carried by a mo-
bile crane, considering the influence of wind forces. 
Geisler and Sochacki [4], built a discrete-continuous 
model to investigate the vibration of truck cranes. 
The analytical solution is compared with the finite 
element results obtained using the COSMOS/M 
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package. The variations of the vibrational frequency 
versus the applied load and angles of boom lifting 
are graphically illustrated. Mijailović [5] devel-
oped a mechanical-mathematical model with eigh-
teen general coordinates to analyze the dynamic 
response of truck cranes. Using the finite element 
method, Trąbka [6], presented various computa-
tional models with different numbers and selections 
of flexible components for a telescopic boom crane. 
The agreement between the numerical simulation 
outcomes and the test results of an actual structure 
was evaluated both qualitatively and quantitatively. 
Ilir and Naser [7] examined a model and simulation 
with MapleSim software and analyzed the dynamics 
and vibrations in truck-mounted cranes when lift-
ing maximum loads. They also explored methods to 
control these vibrations and optimized the working 
process of truck-mounted cranes. Sagirli et al. [8] 
presented a theoretical model of a spatially driven 
telescopic rotating crane using the Linked Graph 
technique. Their model unifies the drive system and 
the main structure. However, the overall system ex-
hibits high nonlinearity due to geometric nonlinear-
ity, gyroscopic forces, hydraulic compressibility, and 
the elastic structure of the boom.

Raftoyiannis and Michaltsos [9] presented an 
analytical model suitable for the dynamic analysis 
of telescopic cranes. This model accounts for the 
time-varying nature of the second beam’s natural 
frequency and shape. Their theoretical framework 
employed a sequential approach utilizing the modal 
superposition technique. Their team has analyzed 
various telescopic crane configurations, and the re-
sults are presented as dynamic response diagrams. 
Based on the energy method and the Hamilton 
principle, Liu et al. [10] established the parametric 
vibration Equation of the crane arm, which is ex-
pressed as the Mathieu Equation. Zheng and Wang 
[11] employed kinematic and dynamic modeling 
to analyze the movements of a telescopic crane, 
including slewing, luffing, telescoping, lifting, 
and pulling loads. Applying the Lagrange method, 
the crane dynamic Equations are obtained. These 
Equations along with the constraint Equation have 
form a system of differential-algebraic Equations 
(DAEs). The constraint stabilization method is 
then employed to solve these DAEs.

Maczynski and Wojciech [12] introduced a 
threedimensional (3D) model of a telescopic mobile 
crane, in which flexibilities and damping are consid-
ered. An algorithm for optimizing the drive functions 
of a crane’s slewing upper structure is presented to 
determine the load positioning at the endpoint of 
a work cycle. Esqué et al. [13] introduced a new 

method for designing and testing mobile hydraulic 
cranes. They have created a modular system that can 
generate dynamic models of the crane and visualize 
the simulation in real time through a 3D interface. La 
Hera et al. [14] addressed control challenges in elec-
tro-hydraulic cranes (friction, dead zones, and vibra-
tions) with a combined linear and nonlinear control 
algorithm, achieving accurate end effector tracking. 
Sochacki et al. [15] built a mathematical model for 
a telescopic boom and its hydraulic cylinder. They 
used Hamilton’s principle to formulate the problem, 
considering the geometric nonlinearities involved. 
To solve this problem, they employed the small pa-
rameter method. Bold et al. [16] explored how vari-
ous damping mechanisms affect the vibrations of a 
truck-mounted crane boom. When the boom extends 
or retracts, energy is lost due to two factors: the in-
herent damping properties of the materials used in 
the boom itself, and additional dampers strategically 
placed at the support and along the telescopic sec-
tions. Using the interactive analysis method, Qian 
et al. [17] determined outrigger reactions of a hy-
draulic mobile crane, to prevent potential outcomes 
during regular operation. Kacalak et al. [18] utilized 
intelligent computing methods to analyze and study 
crane simulations in operations. The model was de-
signed within a CAD/CAE environment, enabling 
assessment of its stability for selected configurations 
and operating conditions. Neural network-assisted 
analysis of the various contact forces exerted by the 
outriggers on the ground, stability, torque, and cen-
ter of mass during processing facilitates determining 
the trajectory to ensure crane stability. The results 
of the simulation study are presented in terms of the 
variation of stability conditions depending on dif-
ferent parameters. Based on the proposed dynamic 
computational method and finite element method 
(FEM), Sun et al. [19] used computer simulations 
with artificial intelligence to analyze crane stability 
during movements. A 3D model was created and an-
alyzed for various configurations and loads. A neural 
network helped assess contact forces, torques, and 
center of mass to ensure stable crane operation. The 
simulations considered factors like boom and arm 
positions, load mass, and applied load value. Kjel-
land and Hansen [20] have introduced a method for 
actively controlling vibrations in the hydraulically 
operated boom of a vehicle loader crane, which is 
compared and combined with a pressure feedback 
control of the proportional valve

It is crucial to develop a dynamic model for 
the truck crane. The above studies have addressed 
crane dynamics in working scenarios but have not 
considered the elasticity of the cable and foundation. 
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Therefore, this study incorporates the elasticity of 
cables and foundations into the dynamic model of 
a truck crane to more accurately describe operating 
conditions and help design safer crane operations.

DYNAMIC MODEL OF TRUCK CRANE

Mechanical model

Truck cranes usually work in lifting mode, 
varying their reach or rotating around a vertical 
axis in the working plane. In this study, consider-
ing the case where the mechanism needs to work 
in a plane, the drum instead of the lifting rope 
will change the length of the lifting cable, and the 
boom can be changed in length or lifting angle by 
hydraulic cylinders as shown in Figure 1. 

The outriggers resting on the elastic founda-
tion. The system includes two types of elements: 
the front and rear support legs are modeled as the 
elastic element and the bumper element (c1, b1 and 
c2, b2). When the foundation is settled, the settle-
ment of the foundation is represented as settlement 
parameters q1 and q2, respectively. Body 9 is con-
sidered a rigid block with a center of mass C9. On 
the body of the vehicle is a slewing platform 8. The 
winch system 7 lifts and lowers the lifting object 
thanks to the motor torque M. The lifting cable in 
the working process is considered an elastic ele-
ment with a stiffness coefficient of c, a drag coef-
ficient of b and a total stretch is xs. The lifting lever 
model is the reciprocating stages 3, 4, and 5 which 
are pushed by a hydraulic motor, on the top of the 
third segment is the hoist assembly 2. The lifting 
lever is raised and lowered by hydraulic cylinder 6. 
During the working process, the hydraulic cylinders 

will generate thrust to change the reach or lift angle 
of the boom. The above model of truck crane is a 
mixed system that has both a tree structure and a 
ring structure (forklift cluster). To build a dynamic 
model for this model, there are several methods, in 
which the Lagrange multiplier method is suitable 
[21]. The model is determined to consider rope 
elasticity and the ground, ignoring external influ-
ences such as wind and chassis elasticity. To build 
the dynamic model of the crane, some assumptions 
to simplify the problem are as follows:
 • The chassis frame, which is the basic lifting 

element of the crane, rests on four extended 
stays based on a foundation.

 • The rotational frame (body) 8, performs ro-
tational movement towards the vertical axis 
(movement in rotational plane). In this paper, 
only the crane works in the plane, so the rotat-
ing part is fixed relative to the frame.

 • Crane boom, rotationally mounted in the 
body, performing movement towards vertical 
axis (lifting plane) and movement of recipro-
cal extension of units (telescopic movement).

 • The motor shaft, the hydraulic pump, the gear-
box shafts and gears, and the joints are stiff.

 • The boom of the crane is uniform over the en-
tire length and is stiff.

 • The cable has the reference hardness c, and 
the vibration quenching coefficient is b, 
omitting changes in the length of the cable 
length from the boom to the drum due to the 
influence of the angle of rotation.

 • The lifting cylinder should be replaced with a 
spring and shock absorber equivalent, ignoring 
the mass of the piston-cylinder during service.

 • The influence of wind load is ignored.

Figure 1. Model of truck crane in the working plane
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Equations of motion 

Choose interpolation coordinates and linkage equations 
Figure1 diagram, we have the parameters and choose the coordinates as follows: Weight 1 is the load 

to be lifted when working, the mass of the lifting object and the hook is m1. For O2B consisting of three 
bars, consider rods 3, 4, and 5 as uniform cross-sectional bars with the center of mass, and length of C3, 
C4, C5, m3, m4, m5 and l3, l4, l5, respectively. The lever with O2B has a variable lift angle thanks to 
hydraulic cylinder 6 with variable length 3s due to thrust Fs3  (initially long cylinder l5, ignoring cylinder 
weight). Winch 7 rotates around the O3 axis to collect or release the rope. Assume that the winch drum 
and the rope wrapped around it weight m7, and radius r7. The slewing platform 8 has a mass m8, the 
center of mass C8 carrying the actuator rotates around the body. In the working mode in the plane under 
consideration, the slewing platform 8 is stationary relative to the body of the vehicle. The bodywork is 
modeled as part 9, with a center of mass and mass of C9 and m9, respectively. 

To make the Equation of motion dynamics of the crane, we choose the interpolation coordinates as 
follows: q1, q2 is the settlement of the elastic foundation at each outrigger; s is the length of the rope 
from the tip of the boom to the rope hoist 1; φ1,φ2is the lift angle of O2B rod and cylinder 6, respectively; 
s1,s2 determines the relative reciprocating motion of segment 4 on boom segment 5 and rod segment 3 
on boom segment 4 (the telescopic extension boom), respectively; s3is cylinder length 6; xs is the 
elongation of the rope; θ is the swing angle of the lifting body. 

Linkage Equations: The coordinate system selected above is a residual coordinate system because 
φ1, φ2 depends on 3s  the following linkage Equations: 

{
f1=l6 sinφ1 -s3 sinφ2 +l7 sinα=0

f2=l6 cosφ1 -s3 cos φ2 +l7 cos α=0 (1) 

Determine the kinetic energy of the system 
The kinetic energy of the system is equal to the sum of the kinetic energies of the solid bodies: 

T=T1+T2+...+T9 (2) 

Body kinetic energy 9. When the ground is elastic, the body will move parallel to the plane as shown 
in Figure  2, we have kinetic energy: 

 
Figure 2. Body displacement 

T9=0.5J9ω9
2+0.5m9vC9

2  (3) 

where: J9 is the moment of inertia of the body taken with its center of mass C9, ω9 is the angular velocity 
of the body, ω9=γ̇, vC9and is the velocity of the center of mass C9. They are defined as follows: 

tan γ ≈γ=(q2-q1)/l7⇒γ̇=(q̇2-q̇1)/l7 (4) 

yC9
=q1+l9 tan γ+constant ⇒yC9

=q1+l9γ+constant 
⇒vC9=ẏC9

=q̇1+l9γ̇ 
(5) 

Substituting (6), and (5) into (4), simplifying we get: 

T9=0.5q̇2
2(J9+m9l9

2)/l7
2+0.5[J9/l7

2+m9(1-l97)2]q̇1
2-[J9/l7

2-m9l97(1-l97)]q̇1q̇2 (6) 

where: l97=l9/l7.  
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The kinetic energy of the slewing platform 8. The slewing platform is fixed to the chassis, so the 
kinetic energy is calculated as the chassis:  

T8=0.5J8ω8
2+0.5m8vC8

2  (7) 

where: m8 and J8 are the mass of the slewing platform and the moment of inertia of the slewing platform 
taken with its center of mass C8, ω8 is the angular velocity of the slewing platform, equal to the angular 
velocity of the body ω8=γ̇, vC8 is the mass velocity center of the body, we have: 

yC8
=q1+l8 tan γ+constant ⇒yC8

=q1+l8γ=(l8/l7)q2+(1-l8/l7)q1+constant (8) 

 ⇒ vC8=ẏC8
=q̇1+l8γ̇=(l8/l7)q̇2+(1-l8/l7)q̇1 (9) 

Substituting the expression (9), (4) into (7) to simplify, we have the body kinetic energy: 

 T8=0.5(J8+m8l8
2)q̇2

2/l7
2+0.5[J8/l7

2+m8(1-l87)2]q̇1
2-[J8/l7

2-m8l87(1-l97)]q̇1q̇2 (10) 

where: l87=l8/l7.  
 

Kinetic energy is required with O2B. Because the horizontal deviation of the O2 bearing relative to the 
center of mass C2 is negligible compared to the size l7. Therefore, approximate the vertical displacement 
of the bearing O2: 

 yO2
=yC8

+constant=q1+l8γ+constant (11) 

 vO2=vC8=ẏO2
=ẏC8

=l87q̇2+(1-l87)q̇1 (12) 

We have the coordinates of the centroids of the segments needed: 

xC5=(l5/2) cos(φ1-γ)+constant 
xC4=(s1+l4/2) cos(φ1-γ)+constant 
xC3=(s1+s2+l3/2) cos(φ1-γ)+constant 
xB=(s1+s2+l3) cos(φ1-γ)+constant 

yC5
=yO2

-(l5/2) sin(φ1-γ) 
yC4

=yO2
-(s1+l4/2) sin(φ1-γ) 

yC3
=yO2

-(s1+s2+l3/2) sin(φ1-γ) 
yB=yO2

-(s1+s2+l3) sin(φ1-γ) 

(13) 

Derivative (13) with time we can calculate the velocities of the centers of mass C3, C4, C5, and tip B, 
along with the angular velocity: 

 ωO2B=φ̇1-γ̇=φ̇1-(q̇2-q̇1)/l7 (14) 

The kinetic energy of the objects from 2 to 5 of the cranes (both solid objects moving in parallel, and 
the kinetic energy of end B (as a concentrated mass) can be calculated as: 

T3=0.5m3ẏO2
2 +0.5m3(ṡ1+ṡ2)2+0.5m3[(s1+s2+l3/2)2+l3

2/12]×(φ̇1-γ̇)2-m3ẏO2
(ṡ1+ṡ2) sin(φ1-γ) 

-m3(s1+s2+l3/2)ẏO2
(φ̇1-γ̇) cos(φ1-γ) 

(15) 

T4=0.5m4ẏO2
2 +0.5m4ṡ1

2+0.5m4[(s1+l4/2)2+l4
2/12]×(φ̇1-γ̇)2-m4ẏO2

ṡ1 sin(φ1-γ) 
-m4(s1+l4/2)ẏO2

(φ̇1-γ̇) cos(φ1-γ) 
 

(16) 

T5=0.5m5ẏO2
2 +m5l5

2/6(φ̇1-γ̇)2-0.5m5l5ẏO2
(φ̇1-γ̇) cos(φ1-γ) (17) 

T2=0.5m2 (
ẏO2

2 +(ṡ1+ṡ2)2+(s1+s2+l3)2(φ̇1-γ̇)2-2ẏO2
(ṡ1+ṡ2) sin(φ1-γ)

-2(s1+s2+l3)ẏO2
(φ̇1-γ̇) cos(φ1-γ)

) (18) 

where: l47=l4/l7, l57=l5/l7 
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The kinetic energy of lifting body 1: 

 T1=0.5m1v1
2+0.5J1θ̇

2
 (19) 

where: J1 is the moment of inertia of the mass about its center of mass. Since the O2O3 axis distance is 
very small compared to the O2B distance, for simplicity we assume the length of the O3B wire is equal 
to the O2B rod. Let the length of wire from hanger B to hanger be s, so the total length of rope is: 

 s*=l5+s1+s2+nps or s=(s*-l5-s1-s2)/np (20) 

The long strain of the cable is xs, we have the coordinates of the load: 

 x1=xB+(s+xs) sin θ=(s1+s2+l3) cos(φ1-γ)+(s+xs) sin θ+constant (21) 

 y1=yB+(s+xs) cos θ=yO2
-(s1+s2+l3) sin(φ1-γ)+(s+xs) cos θ (22) 

The time derivative of the expression (21), (22) we can determine v1, then instead of (19) we get: 

T1=0.5m1 [ẏO2
2 +(ṡ1+ṡ2)2+(ṡ+ẋs)2+(s1+s2+l3)2(φ̇1-γ̇)2 

-2(s1+s2+l3)ẏO2
(φ̇1-γ̇) cos(φ1-γ) -2(s+xs)ẏO2

θ̇ sin θ 
+2(ṡ1+ṡ2)(ṡ+ẋs) sin(θ-φ1+γ)+2(s+xs)(ṡ1+ṡ2)θ̇ cos(θ-φ1+γ) 

-2(s1+s2+l3)(ṡ+ẋs)(φ̇1-γ̇) cos(θ-φ1+γ) 
+2(s1+s2+l3)(s+xs)θ̇(φ̇1-γ̇) sin(θ-φ1+γ)]+0.5J1θ̇

2
 

(23) 

Substituting the kinetic energy of the bodies into expression (2) we get the kinetic energy of the 
mechanical system:  

T=0.5(m1+m2+m3+m4+m5)ẏO2
2 +0.5(m1+m2+m3)(ṡ1+ṡ2)2+0.5m4ṡ1

2+0.5m1(ṡ+ẋs)2 

+0.5(m1(s+xs)2+J1)θ̇
2
 

+0.5 [m1(s1+s2+l3)2+m2(s1+s2+l3)2+m3((s1+s2+l3/2)2+l3
2/12)

+m4((s1+l4/2)2+l4
2/12)+m5l5

2/6
] 

×(φ̇1-γ̇)2+0.5 ((J8+J9)/l72+m8l87
2 +m9l97

2 ) q̇2
2 

-(m1+m2+m3)ẏO2
(ṡ1+ṡ2) sin(φ1-γ) 

+m1ẏO2
(ṡ+ẋs) cos θ -m1(s+xs)ẏO2

θ̇ sin θ 

−[(m1+m2)(s1+s2+l3)+m3(s1+s2+l3/2)
+m4(s1+l4/2)+m5l5/2 ] ẏO2

(φ̇1-γ̇) cos(φ1-γ) 

+m1(ṡ1+ṡ2)(ṡ+ẋs) sin(θ-φ1+γ)+m1(s+xs)(ṡ1+ṡ2)θ̇ cos(θ-φ1+γ) 
-m1(s1+s2+l3)(ṡ+ẋs)(φ̇1-γ̇) cos(θ-φ1+γ) 

+m1(s1+s2+l3)(s+xs)θ̇(φ̇1-γ̇) sin(θ-φ1+γ) 
-m4ẏO2

ṡ1 sin(φ1-γ)+(m8l87(1-l87)+m9l97(1-l97)-(J8+J9)/l72)q̇1q̇2 

 
 
 
 
 
 
 

(24) 

where: γ̇=(q̇2-q̇1)/l7, ẏO2
=l87q̇2+(1-l87)q̇1  

Determining potential and generalized non-conservative forces 
Rigidity factor of rope 

When the rope is in tension with length L, the tensile stiffness is EF (where E is the elastic modulus 
of the rope material, F is the total cross-sectional area), stiffness coefficient c (N/m) is:  

 c=EF/L (25) 

Thus, from the expression, (25) we see that the stiffness of the rope is inversely proportional to the 
length of the wire. In case the length of rope from the first pulley to the hook has a multiple, the stiff 
less of this part is determined by the sum of the stiff less of the branches: 
• Rigidity coefficient of rope from roller to hoist: 
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 c1=EF/(l5+s1+s2) (26) 

• The coefficient of stiffness of the rope from the hoist to the hanger with the hoist multiplier pn is: 
 c2=npEF/s (27) 

• Rigidity factor equivalent to the whole rope: 

 1/c=1/c1+1/c2=(l5+s1+s2)/(EF)+s/(npEF) ⇒ c=EF/(l5+s1+s2+s/np) (28) 

Potential energy 
We have the potential energy of the mechanical system equal to the sum of the potential energy due 

to the gravity of the bodies and the potential energy of the springs: 

 Π=ΠP1+ΠP2+ΠP3+ΠP4+ΠP5+ΠP8+ΠP9+Πc+Πc1+Πc2 (29) 

Substituting Equations from 26 to 28 into 29, shortening we get: 

 

Π=-(m1+m2+m3+m4+m5)gyO2
 

+[(m1+m2)(s1+s2+l3)+m3(s1+s2+l3/2)+m4(s1+l4/2)+m5l5/2]g sin(φ1-γ) 
-m1g(s+xs) cos θ -(m8+m9)gq1-(m8l8+m9l9)gγ 

+0.5EFxs
2/(l5+s1+s2+s/np)+0.5c1q1

2+0.5c2q2
2+constant 

(30) 

Generalized nonconservative forces 
The non-potential operating forces on the mechanical system include: the force of the cylinders 

F⃗⃗ s1,F⃗⃗ s2,F⃗⃗ s3 acting on the fine lines; motor torque M acting on the shaft O3; viscous drag F⃗⃗ b=-bẋ,F⃗⃗ b1=-
b1q̇1,F⃗⃗ b2=-b2q̇2. 
The total virtual work of the system is [21]: 
 ∑ δA=Fs1 δs1+Fs2δs2+Fs3δs3+Mδs*/npR-b1q̇1δq1-b2q̇2δq2-bẋsδxs 

 

So do we have generalizing forces: 

 
Qs1

* =Fs1,Qs2
* =Fs2,Qs3

* =Fs3,Qs
*=M/npR, 

Qq1

* =-b1q̇1,Qq2

* =-b2q̇2,Qxs
* =-bẋs,Qφ1

* =0,Qφ2

* =0  
(31) 

Dynamic equations and solution methods 
The Lagrange multiplier Equation is an Equation written for the residual generalized coordinate system, the 

Equation has the form [16]:  

 
d
dt (

∂T
∂q̇k

) -
∂T
∂qk

=-
∂Π
∂qk

+Qk
*- ∑ λi

∂fi
∂qk

r

i=1

,(k=1,2,...r) (32) 

where: r is the total number of residual generalized coordinates, qk is the kth generalized coordinates, T 
is the kinetic energy, Π is the potential energy, Qk

* is the non-potentially generalized force, fi and the 𝑖𝑖th 
linkage Equation of the system. 
 

Substituting the expressions (24), (30), (31) and (1) into Equations 32 the differential-algebraic Equations 
describing the motion of the system have the form [21]: 

 M(s)s̈+C(s,ṡ)ṡ+g(s)=τ(t)-Φs
T(s)λ (33) 

 f(s)=0 (34) 

where: s is the vector of generalized coordinates, M(s) is the generalized mass matrix of the system, τ(t) 
is the generalized force vector for non-potentially active forces, λ=[λ1,λ2]T is the vector of Lagrange 
multipliers, f is the constraint conditions,Φs is the Jacobi matrix of vector f, C(s,ṡ) is the matrix 
centrifugal inertia and Coriolis inertia, g(s) is a generalized force vector corresponding to the forces 
acting as potential forces.  
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The system of Equations from 41 to 51 (Appendix) together with the two constraint Equations 1 
forms a system of differential-algebraic Equations with the number of Equations equal to the unknowns 
being the generalized coordinates and multiplier Lagrange is 1 2, .   In the case of ignoring the 
deformation, from the above system of Equations, we remove the Equations of the deformation 
coordinates, and at the same time give the strain zero in the remaining Equations, we will obtain a 
dynamic model for the structure. All solid stitches.  

The system of Equations 33 and 34 is a system of differential-algebraic Equations written for a 
system with a ring structure. To solve this system of Equations, we have two groups of methods: the 
method of transforming algebraic differential Equations into ordinary Equations and the direct solution 
of differential-algebraic Equations.  
For the convenience of writing, we denote. 
 p1(s,ṡ,t)=τ(t)-C(s,ṡ,t)ṡ-g(s) (35) 

Equations 33, 34 now take the form: 
 M(s)s̈+Φs

T(s)λ=p1(s,ṡ,t) (36) 

 f(s)=0 (37) 
Deriving twice Equation 37 we get the Equations  

 f ̇(s)= ∂f
∂s

ṡ=Φs(s)ṡ=0 (38) 

 f ̈(s)=Φs(s)s̈+Φ̇s(s)ṡ=0⇒Φss̈=-Φ̇s(s)ṡ=p2(s,ṡ) (39) 

Equations 36 and 39 can be rewritten as the following matrix: 

 [ M Φs
T

Φs 0 ] [s̈
λ]= [

p1
p2

] (40) 

Equation 42 is proven to be equivalent to the system of Equations 35, and 36 in [21]. To solve 
Equation 42, we can use methods of decomposing the Lagrange factor and eliminating the Lagrange 
factor [21]. In this paper, algebraic differential Equations have been transformed into ordinary 
Equations, and then the Runge – Kutta 4th order method with numerical technique has been employed 
to solve the differential Equations.  

CALCULATION 
Data for calculation parameters are taken according to the truck crane 55713-1К as Table 1. The 

hardness of the ground is determined according to the following formula: 
 C0=q0.F  

where: q0 – coefficient of soil hardness as table 2; F – outrigger cushion contact area, F = 0.45 × 0.45m2 

Calculation results in a load of m1=3.5tons. The hard coefficient of the ground is chosen to be the largest 
q0 = 100 MN/m3, the resistance coefficient of the ground b1=b2=405000 Ns/m (0.1%) (Tab. 2). 
 
Table 1. Loading characteristics of truck crane 55713-1К 

Parameter Value Unit Parameter Value Unit 

m1 3500 kg l3 7 m 
m2 178 kg l4 8 m 
m3 192.6 kg l5 9 m 
m4 192.6 kg l6 = O1O2 1.1 m 
m5 192.6 kg l7 3.08 m 
m6 96 kg l8 1.452 m 
m7 32 kg l9 0.56 m 
m8 4700 kg J8 763.18 kg/m2 
m9 10590 kg J9 15200.21 kg/m2 
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Table 2. Coefficient of specific resistance q0 (MN/m3) of the ground 
Characteristics of the land Coefficient value q0 

Sand, wet clay, arable land 25 ÷ 35 

Tight sand, wet clay 36 ÷ 60 

Tight clay 100 ÷ 125 

Hard pavement 130 ÷ 180 

 
The influence of the boom length changes on the dynamic response of the crane. In case the heavy 

object is pushed away and at the same time lowered so that the height of the object remains constant, 
then the angle of inclination of the boom remains constant. So: 
The angle of inclination of the boom is locked:  
 φ1=constant,φ2=constant,s3=constant⇒φ̇1=φ̇2=0,φ̈1=φ̈2=0  

Problem: Given a known law of motion: s1, s2, and s. Find the movements: xs, q1, q2, θ  

Choose a known motion: Law of motion s1 and s2: the boom segments 3 and 4 are ejected from rest 
with acceleration with constant acceleration in the interval [0, T1], uniform motion in the interval [T1, 
T2], slow motion, and stop with the same acceleration in the interval [T2, T3], the law of motion:  

v1= {
a1t  with 0≤t<T1

a1T1=V10 with T1≤ t<T2
V10-a1(t-T2) with T2 ≤ t <T3 and T3=T2+T1

; v2= {
a2t  with 0≤t<T1

a2T1=V20 with T1≤t<T2
V20-a2(t-T2) with T2≤t<T3

 

• Length of the boom before and after the lever is pushed out: Lmin = 10.5 m; Lmax = 22.4 m  
• The tilt angle of the boom: φ1= 60o 
• The rate of change needs to be steady: V10 = V20 = 0.35 m/s 

Law of motion s of the mass: Load 1 is lowered with speed v such that its height remains constant.  
 

v= {
  at with 0≤t<T1

aT1=V0with T1≤t<T2
V10-a(t-T2) with T3=T2+T1 and T2≤t<T

 
 

Length of rope s(0)=s0=9.09 m. Choose the law of motion that does not change the height of the 
weight.  
• Initial conditions: The Equation of motion of the system in this case xs,θ,q1,q2: 
• Locations: θ0=0; q10=0.00192 m; q20 =0.00257 m; xs0 =0.00903 m 
• Velocities: θ̇0=0, q̇10=0, q̇20=0, ẋs0=0 

where: θ0 is the initial swing angle of the lifting body and xs0 is the initial elongation of the spring:  
 xs0=P1/c=P1(l5+s10+s20+s0/np)/EF  

rope with elastic modulus E=1,4.1011N/m2, rope diameter d =20 mm, hoist multiplier np=2q10, q20 is 
the initial static settlement of the ground at the front and rear outrigger positions, respectively.  

q10=N1/c1,q20=N2/c2 

where: N1, N2 is the total static pressure, determined from the initial static equilibrium condition: 

 N20= 77.8 kN ⇒ q20= 0.00192 m and N10= 104.13 kN ⇒ q10= 0.00257 m  
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Figure 3a shows the elastic vibration of the rope. 
During the period from 0 s to 20 s, the rope length-
ens, so the static elongation gradually increases and 
elastic oscillation around that static strain. The next 
period oscillates around the constant static strain 
and fades out. Figure 3b indicates the oscillation of 
weight 1, the oscillation is stable after the motion 
stops, and the amplitude of the oscillation is about 
1.50. This oscillation will fade if we add an air resis-
tance factor.

Figures 4 and 5 present the deformation graphs 
of the ground and the total front and rear outrigger 
pressure. The ground deformation and this pres-
sure depend on the movement of the boom and the 
shaking of load 1. This pressure changes relatively 
large in the following regions: The total pressure of 
the rear outrigger N2 in the acceleration region from 
0–3 s has a minimum value of about 68.3 kN and a 
maximum of 93.6 kN; it increases as the mechanism 
moves uniformly; in the speed reduction area from 
17 s to 20 s, the minimum value is about 141.5 kN 
and the maximum is 152.4 kN; in the region of no 

movement over 20 s, the minimum value is about 
130.6 kN and the maximum is 147.2 kN. With total 
front outrigger pressure, the opposite rule.

The influence of the inclination angle changes 
on the dynamic response of the crane

Investigate the influence of the inclination 
angle of the boom on the oscillation. The param-
eters are taken as above, in which the angle of 
inclination of the boom is taken as 

Figure 6 is a graph of rope strain. The magni-
tude of cable strain increases as the boom angle 
increases but the vibration amplitude decreases.

Figure 7 is the total front outrigger pressure, 
we see that the smaller the angle of inclination of 
the boom (corresponding to the increased reach), 
the lower the pressure of the front outrigger, in the 
case of a 30o tilt angle, this pressure is negative, 
that is, the crane has lost balance and overturned. 
Figure 8 is the total rear outrigger pressure.
a) Survey 2
b) Survey 3

Figure 3. Vibration of rope and load 1, a) Elastic vibration of rope, b) Vibration of a load 1
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Figure 4. Vibration of outrigger on front and rear

Figure 5. Total front and rear outrigger pressure

Figure 6. Elastic vibration of the rope

Figure 9a is the shaking oscillation of the 
load, we see that in the case of an inclination 
angle of 45°, the amplitude of the shaking os-
cillation is larger than in the other two cases, 
so it also causes a larger pressure change than 
the other two cases remaining cases.

The influence of the changing speed of the boom 
length on the dynamic response of the crane

Investigate the effect of speed of change of 
boom length. When the changing speed of the 
length of the boom increases, the amplitude of 
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Figure 7. Total front outrigger pressure

Figure 8. Total rear outrigger pressure

Figure 9. Vibration of a load 1, θ (degree).
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shaking oscillation increases accordingly, as 
shown in Figure 9b, the speed V1 = 0.2 m/s, the 
swing amplitude is about 0.6o, the speed increases 
to V1 = 0.35 m/s The shaking amplitude is about 
1.5° and when V1 = 0.55 m/s the shaking ampli-
tude is about 3°. This shaking amplitude increas-
es, causing the settlement vibration amplitude to 
increase accordingly as shown in Figure 10.

CONCLUSIONS

The process of designing and employing the 
truck crane always presents the problem of pro-
viding reliable and safe operation. Thus, there is 
a need to introduce new and improving previous 
mechanical models to describe the problems of 
exploitation more precisely. Such a contribution 
provides the possibility of introducing appropri-
ate devices, measures, and procedures that will 
result in improving the safety of construction and 
the personnel in charge.

The article has modeled the dynamics of a truck 
crane and established a system of Equations describ-
ing it working in the plane when considering the de-
formation factors of the ground and rope. 

Analyzed and surveyed in the working case 
when increasing the length of the boom in the article 
allows the following conclusions could be drawn:
1. The system of Equations describing the crane 

truck working in a plane is complicated if the 
elastic deformation of some parts such as lift-
ing cables and the ground is considered. If we 
let these deformation components be zero, we 
will get the system of Equations of the crane 
truck when the parts are all solid.

2. During the working process, the influence of 
the moving factors, the tilt angle of the boom. 
These parameters will affect the swing of the 

load, and the elastic vibration of the ground, 
thereby affecting the stability of the truck crane 
when operating. Several influences have been 
investigated by the article.

3.  In the case of studying the effect of the boom 
length and its angle of inclination, the charac-
terization of the changes in the vibration fre-
quency and their values on the boom length 
was obtained. Similar vibrational frequencies 
with their slightly different varying characters 
were obtained for shorter boom lengths. The 
inclination angle of 45° results in the great-
est shaking vibration compared to inclination 
angles of 30° and 60°. As the speed of boom 
length changes increases, the shaking ampli-
tude increases correspondingly. The frequen-
cies remain unchanged because the length of 
the lifting cable remains unchanged. 

4. Based on the dynamic model built in the article, 
the study of the stability and control of the truck 
crane is completely feasible. Within the limits of 
this paper, these studies have not been presented.

5. Agreement in the obtained results indicates 
the correctness of the built models. Verifica-
tion of the built models will be possible after 
conducting experimental research on the real 
object (on a truck crane).
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