PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation on the nanofluids heat transfer inside a porous inclined cavity with wavy boundary

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, a numerical study on the free-convective heat transfer in a porous media cavity with a wavy boundary was carried out. The validation was done by comparing the results with the experimental data. The cavity inclination angle, material of nanofluid, nanoparticles volume fraction, the Rayleigh number, and porosity of the medium are the parameters which are investigated in this study. Results suggested that, due to the thermophysical properties of Cu particles in water, the heat transfer rate was increased for Cu-Water nanofluid in comparison to Al2O3-Water nanofluid, while the heat transfer rate decreased by increasing the volume fraction of nanoparticles. Numerical results showed that the Rayleigh number has significant effect on the heat transfer rate so that increase in the Rayleigh number from 100 to 10 000 increased the averaged Nusselt number between 2 to 3 times. The effect of porosity on heat transfer proved that the convective heat transfer rate increased with increasing the porosity of the porous medium. The effect of inclination angle of cavity on the heat transfer rate suggested that the optimum angle of cavity causing the highest heat transfer rate from wavy wall is 45°.
Rocznik
Strony
511--524
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
autor
  • Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
  • Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
  • Mechanical Rotating Equipment Department, Niroo Research Institute (NRI), Tehran, Iran
Bibliografia
  • 1. H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Experimental Heat Transfer, 19, 181–191, 2006.
  • 2. V. Velagapudi, R.K. Konijeti, C.S.K. Aduru, Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids, Thermal Science, 12, 27–37, 2008.
  • 3. C. Murugesan, S. Sivan, Limits for thermal conductivity of nanofluids, Thermal Science, 14, 65–71, 2010.
  • 4. A.K. Nayak, R.K. Singh, P.P. Kulkarni, Measurement of volumetric thermal expansion coefficient of various nanofluids, Technical Physics Letters, 36, 696–698, 2010.
  • 5. M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi, A. Campo, Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks, International Journal of Thermal Sciences, 50, 44–52, 2011.
  • 6. P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, International Journal of Thermal Sciences, 48, 290–302, 2009.
  • 7. A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Sciences, 48, 391–400, 2009.
  • 8. R. Strandberg, D.K. Das, Finned tube performance evaluation with nanofluids and conventional heat transfer fluids, International Journal of Thermal Sciences, 49, 580–588, 2010.
  • 9. S.K. Das, N. Putra, W. Roetzel, Pool boiling characterization of nano-fluids, International Journal of Heat and Mass Transfer, 46, 851–862, 2003.
  • 10. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nano-fluids, International Journal of Heat and Mass Transfer, 46, 3639–3653, 2003.
  • 11. M.K. Triveni, R. Panua, Numerical analysis of natural convection in a triangular cavity with different configurations of hot wall, International Journal of Heat and Technology, 35, 11–18, 2007.
  • 12. R. Mohebbi, S.H. Khalilabad, Y. Ma, Effect of -Al2O3/Water nanofluid on natural convection heat transfer of corrugated shaped cavity: study the different aspect ratio of grooves, Journal of Applied Fluid Mechanics, 12, 1151–1160, 2019.
  • 13. F. Selimefendigil, H.F. Öztop, Role of magnetic foeld and surface corrugation on natural convection in a nano-fluid filled 3D trapezoidal cavity, International Communications in Heat and Mass Transfer, 95, 182–196, 2018.
  • 14. A. Akbarinia, A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes, Applied Thermal Engineering, 27, 1327–1337, 2007.
  • 15. M. Akbari, A. Behzadmehr, F. Shahraki, Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid, International Journal of Heat and Fluid Flow, 29, 545–556, 2008.
  • 16. O. Ghaffari, A. Behzadmehr, H. Ajam, Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach, International Communications in Heat and Mass Transfer, 37, 1551–1558, 2010.
  • 17. A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid, International Journal of Thermal Sciences, 47, 1113–1122, 2008.
  • 18. C.J. Ho, M.W. Chen, Z.W. Li, Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, International Journal of Heat and Mass Transfer, 51, 4506–4516, 2008.
  • 19. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29, 1326–1336, 2008.
  • 20. E. Abu-nada, H. Oztop, Effect of inclination angle on natural convection in enclosures filled with Cuewater nanofluid, International Journal of Heat and Fluid Flow, 30, 669–678, 2009.
  • 21. S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics-B/Fluids, 28, 630–640, 2009.
  • 22. E.B. Ögüt, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Journal of Thermal Sciences, 48, 2063–2073, 2009.
  • 23. E. Abu-nada, Z. Masoud, H. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, International Journal of Thermal Sciences, 49, 479–491, 2010.
  • 24. M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the side walls, International Journal of Thermal Sciences, 49, 1536–1546, 2010.
  • 25. M.A. Sheremet, C. Revnic, I. Pop, Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect, Applied Mathematics and Computation, 299, 1–5, 2017.
  • 26. I. Hashim, A.I. Alsabery, M.A. Sheremet, A.J. Chamkha, Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model, Advanced Powder Technology, 30, 399–414, 2019.
  • 27. M. Sheremet, I. Pop, H.F. Öztop, N. Abu-Hamdeh, Natural convection of nanofluid inside a wavy cavity with a non-uniform heating, International Journal of Numerical Methods for Heat & Fluid Flow, 27, 958–980, 2017.
  • 28. C.C. Cho, C.L. Chen, C.K. Chen, Natural convection heat transfer performance in complex-wavy-wall enclosed, International Journal of Thermal Sciences, 60, 255–263, 2012.
  • 29. I.F. Macdonald, M.S. El-Sayed, K. Mow, F.A. Dullien, Flow through porous media-the Ergun equation revisited, Industrial & Engineering Chemistry Fundamentals, 18, 199–208, 1979.
  • 30. M. Mahmoodi, S.M. Hashemi, Numerical study of natural convection of a nanofluid in C-shaped enclosures, International Journal of Thermal Sciences, 55, 76–89, 2013.
  • 31. H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20, 571–581, 1952.
  • 32. S.V. Patankar D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, 54–73, 1983.
  • 33. M.A. Sheremet, I. Pop, H.F. Öztop, N. Abu-Hamdeh, Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater, Journal of Hydrodynamics, 28, 873–885, 2016.
  • 34. N.P. Karagiannakis, G.C. Bourantas, E.D. Skouras, V.C. Loukopoulos, K. Miller, V.N. Burganos, Modeling the natural convection flow in a square porous enclosure filled with a micropolar nanofluid under magnetohydrodynamic conditions, Applied Sciences, 10, 1633, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c574cd6-5425-4026-af1a-ef264b2e89ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.