PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal design parameters for hydraulic vertical flocculation in the package surface water treatment plant

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After 2003, hundreds projects were completed to provide drinking water to rural areas in most governorates in Iraq. These projects consist of the package water treatment plant, which treats surface water from the Tigris and Euphrates rivers. All the package water treatment plant contains a mechanical flocculators, which suffers from continuous faults and needs periodic maintenance and needs electric energy to operate, which leads to an increase in the cost of water production and lack of quality of water produced. In this project, the possibility of changing the type of flocculators from mechanic to hydraulic was tested for a 100 m3·h–1 package water treatment plant in the Al-Eskan water treatment project in the south of Diwaniyah city in Iraq. There are many challenges facing the design involving findings ways to improve the effi ciency of the flocculation system. Computational Fluid Dynamics (CFD) package, ANSYS Fluent 16.1 software have been used to simulate turbulent fluid flow in hydraulic flocculators for Al-Eskan package water treatmen plants (EPWTP). The flocculator simulations in ANSYS Fluent are used to obtain turbulent kinetic energy dissipation rate to determine the distance between baffles, the quantity of baffles, velocity gradient, residence time, and flocculation performance. The results obtained from ANSYS Fluent simulation are used in designing a hydraulic flocculator, so our finding can be utilized to validate the hydraulic flocculator model. The results confirmed that the method used to design certain parameters of the tank are fairly accurate. Overall the design of the flocculation tank produced reasonable results which match expected results of hydraulic flocculation tanks found in literature. The results of the report suggest that a height to baffle spacing ratio of 22.5 creates intersecting energy dissipation regions that produce the greatest formation of flocs per reactor volume.
Rocznik
Strony
438--451
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., zdj.
Twórcy
autor
  • University of Al-Qadisiyah, Collage of Engineering, Department of Road and Transport Engineering, 58002 Diwaniyah, Iraq
Bibliografia
  • Bridgeman, J., Jefferson, B. & Parson, S.A. (2009). The Development and Application of CFD Models For Water Treatment Flocculators. Advances in Engineering Software, 41, 99-109.
  • Casey, G., Monroe, W.S. & Lion, L. (2017). Revisiting Hydraulic Flocculator Design for Use in Water Treatment Systems with Fluidized Floc Beds. Environmental Engineering Science, 34(2), 122-129. https://doi.org/10.1089/ees.2016.0174
  • Crittenden, J.C., Trussel, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G. & Borchardt, J.H. (2012). MWH’s Water Treatment. Principles and Design. Hoboken, NJ: John Wiley and Sons.
  • Degreìmont (1991). Water Treatment Handbook 6th ed. Paris: Degreìmont.
  • Edzwald, J.K. (2013). Coagulation in Drinking Water Treatment: Particles, Organics and Coagulants. Water Science and Technology, 27(11), 21-35.
  • Haarhoff, J. & Van der Walt, J.J. (2001). Towards Optimal Design Of Around the End Flocculators. Journal WSTR – Aqua, 50(3), 149-159.
  • Lawler, D.F. & Nason, J.A. (2004). Integral water treatment plant design: A new look. Abstracts of Papers of the American Chemical Society, 228, U601.
  • Marques, R.D.O. & Ferreira Filho, S.S.F. (2017). Flocculation Kinetics of Low-Turbidity Raw Water and the Irreversible Floc Breakup Process. Journal of Environmental Technology, 38(7), 901-910. https://doi.org/10.1080/09593330.2016.1236149
  • McConnachie H.L., Folkard, G.K., Mtwali M.A., & Sutherland, J.P. (1999). Field Trials Of Appropriate Flocculation Processes. Water Research, 33(6), 1425-1434.
  • McConnachie, G.L. & Liu, J. (2000). Design Of Baffled Hydraulic Channels For Turbulence-Induced Flocculation. Water Research, 34(6), 1886-1896.
  • Ministry of Municipalities and Public Works of the Iraq (2010). Report of General Directorate of Water. Retrieved from: http://www.wikiraq.org/wiki/288/
  • Schulz, C.R. & Okun, D.A. (1984). Surface Water Treatment For Communities in Developing Countries. New York: Wiley-interscience & London: ITDG Publishing.
  • Smet, J., & Wijk, C.V. (2002). Small Community Water Supplies: Technology, People and Partnership (Technical Paper Series 40). Delft: IRC International Water and Sanitation Centre. Retrieved from: https://www.ircwash.org/sites/default/files/Smet-2002-Small_TP40.pdf.
  • US Environmental Protection Agency (1998). Small System Compliance Technology List for the Surface Water Treatment Rule And Total Coliform Rule (EPA 815-R-98-001). Washington, DC. Retrieved from: http://www.epa.gov/OGWDW/ndwac/sum_sstttl.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c5406a2-e0e5-43b9-bffe-5fe8ab15aef2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.