Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this work is to assess the possibility of driving unmanned vehicles in a convoy, depending on the vehicle type (wheeled or tracked, level 0, according to SAE J3016), and the mutual coincidence with a human-controlled vehicle in accordance with the driving scenario adopted. The assessment is based on tests carried out while driving the vehicles along a designated route and measuring the physical quantities that describe the vehicles’ motion, such as the components of the velocity vectors and distances between the vehicles. The tests were carried out on a safe training ground, using inertial-satellite devices mounted on the vehicles; they provide a good basis for planning the minimum passage corridor for a column of vehicles. During the tests, the expected distances between the vehicles were recorded and analyzed depending on the above-mentioned types of the vehicles; based on that, the possibility of using the technology in the carrying out of various missions for the needs of the tactical level units of the Polish Armed Forces was preliminarily assessed. The required lane width for the safe passage of Target 1, Hunter and Target 2 vehicles along the designated routes was calculated, taking into account the external dimensions of the vehicles, the additional widths associated with the vehicles' yaw angles and the maximum lateral distances between the vehicles. During tests of a convoy of remote-controlled vehicles, maintaining a speed of 1.5 m/s and a distance of 10 m, the requirements for the lane width for safe passage were analyzed. The largest lateral gaps were observed between Target 2 and Hunter vehicles, which may affect the planning of the convoy route. The differences in lane width between the two tests were due to the yaw angles of the vehicles and their different dimensions and drive types. In the first test, the lane width for Target 1 and Hunter was 5.50 m and for Target 2 3.70 m; in the second test it was reduced to 3.73 m and increased to 3.75 m, respectively
Czasopismo
Rocznik
Tom
Strony
7--21
Opis fizyczny
Bibliogr. 28 poz., fot., rys., tab., wykr.
Twórcy
autor
- Military Institute of Armoured and Automotive Technology, Sulejówek, Poland
autor
- Military Institute of Armoured and Automotive Technology, Sulejówek, Poland
autor
- Military Institute of Armoured and Automotive Technology, Sulejówek, Poland
autor
- Military Institute of Armoured and Automotive Technology, Sulejówek, Poland
autor
- Military Institute of Armoured and Automotive Technology, Sulejówek, Poland
autor
- Military University of Technology, Warsaw, Poland
autor
- Maritime University of Szczecin, Szczecin, Poland
Bibliografia
- 1. Alzu'bi, H., Tasky, T., (2020). LiDAR-Based Urban Autonomous Platooning Simulation, SAE Technical Paper, 2020-01-0717. https://doi.org/10.4271/2020-01-0717.
- 2. Borhan, H., Lammert, M., Kelly, K., Zhang, C. (2021). Advancing Platooning with ADAS Control Integration and Assessment Test Results, SAE Int. J. Adv. & Curr. Prac. in Mobility 3(4),1969-1975. https://doi.org/10.4271/2021-01-0429.
- 3. Czapla, T., Wrona, J. (2013). Technology Development of Military Applications of Unmanned Ground Vehicles, Vision Based Systems for UAV Applications, Studies in Computational Intelligence. 481(1), 239-309. https://doi.org/10.1007/978-3-319-00369-6_19.
- 4. Czarnowski, J., Dąbrowski, A., Maciaś, M., Główka, J., Wrona, J. (2018). Technology gaps in Human-Machine Interfaces for autonomous construction robots, Automation in Construction, 94, 179-190. https://doi.org/10.1016/j.autcon.2018.06.014.
- 5. Dębowski, A., Faryński, J.J., Żardecki, D.P. (2024). Reference Models of 4WS Vehicle Lateral Dynamics for the Synthesis of Steering Algorithms. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems II − Numerical and Analytical Approaches. DSTA 2021. Springer Proceedings in Mathematics & Statistics. Springer, Cham. 454. https://doi.org/10.1007/978-3-031-56496-3_11.
- 6. Durlik, I., Miller, T., Kostecka, E., Pusty, T., Łobodzińska, A. (2024). Utilizing recurrent neural net-works in sustainable urban transport and logistics. Scientific Journals of the Maritime University of Szczecin, 78(150), 131-149. https://doi.org/10.17402/609.
- 7. Faryński J., Żardecki D., Dębowski A. (2023). Method of Autonomous Vehicle Control Using Simplified Reference Models and Regulators. Problems of Mechatronics Armament Aviation Safety Engineering. 14(4), 37-58. https://doi.org/10.5604/01.3001.0054.1647.
- 8. Guzek M., Jackowski J., Jurecki R. S., Szumska E. M, Zdanowicz P., Żmuda M. (2024). Electric Vehicles − An Overview of Current Issues − Part 1 − Environmental Impact, Source of Energy, Recycling, and Second Life of Battery, Energies, MDPI. 17 (1), 249, 1-25. https://doi.org/10.3390/en17010249.
- 9. Guzek M., Jackowski J., Jurecki R. S., Szumska E. M, Zdanowicz P., Żmuda M. (2024). Electric Vehicles − An Overview of Current Issues − Part 2 − Infrastructure and Road Safety, Energies, MDPI. 17 (2), 495, 1-29. https://doi.org/10.3390/en17020495.
- 10. Guzek, M., Lozia, Z. (2002). Possible Errors occurring during Accident Reconstruction based on Car "Black Box" Records. SAE Technical Paper, 2002-02-0549, 90920. https://doi.org/10.4271/2002-01-0549
- 11. J3016_201806; Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles SAE International, J3016_201806. https://www.sae.org/standards/con-tent/j3016_201806.
- 12. Jaroszek, P., Trojnacki M. (2014). Model-Based Energy Efficient Global Path Planning for a Four-Wheeled Mobile Robot, Control and Cybernetics, 43(2) 337-363. http://yadda.icm.edu.pl/yadda//element/bwmeta1.element.ekon-element-000171510722?printView=true
- 13. Jurecki, R.S.; Stańczyk, T.L. (2021) A Methodology for Evaluating Driving Styles in Various Road Conditions. Energies, 14, 3570. https://doi.org/10.3390/en14123570.
- 14. Kang, C.M., Lee, J., Yi, S.G., Jeon, S.J., Son, Y.S., Kim, W., Lee, S.-H., Chung, C.C. (2015). Lateral Control for Autonomous Lane Keeping System on Highways. In Proceedings of the 2015, 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea (South), 1728-1733. https://doi.org/10.1109/ICCAS.2015.7364643
- 15. Lewiński, R. (2022). Unmanned land vehicles – directions of research and development, WIEDZA OBRONNA, 280(3), 287-312. https://doi.org/10.34752/2022-n280
- 16. Li, X., Sun, Z., He, Z., Zhu, Q., Liu, D. (2015). A Practical Trajectory Planning Framework for Auton-omous Ground Vehicles Driving in Urban Environments. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea (South), 1160-1166. https://doi.org/10.1109/IVS.2015.7225840
- 17. Łopatka, M. (2020). UGV for Close Support Dismounted Operations – Current Possibility to Fulfil Military Demand, Proceedings of 2nd International Conference CND GS’2020, 2020(1), 16-23. https://doi.org/10.47459/cndcgs.2020.2
- 18. Małek, K., Dybała, J., Kordecki, A., Hondra, P., Kijania, K. (2024). Off Road Synth Open Dataset for Semantic Segmentation using Synthetic-Data-Based Weight Initialization for Autonomous UGV in Off-Road Environments, Journal of Intelligent & Robotic Systems, 110 (76). https://doi.org/10.1007/s10846-024-02114-2.
- 19. Prochowski, L., Szwajkowski, P., Ziubiński, M. (2022). Research Scenarios of Autonomous Vehicles, the Sensors and Measurement Systems Used in Experiments. Sensors, 22, 6586. https://doi.org/10.3390/s22176586.
- 20. Prochowski, L., Pusty, T., Gidlewski, M., Jemioł, L. (2018). Experimental studies of the car-trailer system when passing by a suddenly appearing obstacle in the aspect of active safety of autonomous vehicles. IOP Conference Series: Materials Science and Engineering, 421, 032024. https://doi.org/10.1088/1757-899X/421/3/032024
- 21. Pszczółkowski, J., Goliasz, T. (2023). Analysis and evaluation of the technical equipment maintenance system in the Polish Army. Military Logistics Systems. 59(2), 73-102. https://doi.org/10.37055/slw/186384.
- 22. Pusty, T. (2022). Determining the trajectory of the vehicle motion on the basis of the recorded physical quantities describing its dynamics during double lane change maneuvers, The Archives of Automotive Engineering, 96(2), 96-102. https://doi.org/10.14669/AM/151703.
- 23. Salek, M. S., Thakur, M., B., Ala, P., S., K., Chowdhury, M., Schmid, M., Murray-Tuite, P., Khan, S., Krovi, V. (2024). An Overview of Automated Vehicle Platooning Strategies Published in arXiv.org 8 March 2024 Engineering, Computer Science/ Systems and Control. https://doi.org/10.48550/arXiv.2403.05415.
- 24. Szynkarczyk, P., Wrona, J., Pasternak, M., Rubiec A., Serafin, P. (2022). Unmanned Ground Vehicle Equipped with Ground Penetrating Radar for Improvised Explosives Detection. Journal of Automation, Mobile Robotics and Intelligent Systems, 15(2), 20-31. http://dx.doi.org/10.14313/jamris/2-2021/10.
- 25. Support OXTS https://support.oxts.com/hc/en-us/articles/115002772345-RT-Range-Measurements. accessed: 2024-02-05.
- 26. Tesla, N. (1898). Method of and apparatus for controlling mechanism of moving vessels or vehicles, Patent no US613809A.
- 27. Yan, D., Zhao, Z., Liang, K., and Yu, Q. (2023).Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon, SAE Technical Paper, 2023-01-7064. https://doi.org/10.4271/2023-01-7064.
- 28. Wu, C. -F., Lin, C. -J., Lee, C.-Y. (2012). Applying a Functional Neuro-fuzzy Network to Real-Time Lane Detection and Front-Vehicle Distance Measurement; IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 577-589. https://doi.org/10.1109/TSMCC.2011.2166067.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c4db3db-9b20-4971-857e-42b059d81139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.