PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study on the classification methods for breast cancer diagnosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital mammography is one of the most widely used approaches for breast cancer diagnosis. Many researchers have demonstrated the superiority of machine learning methods in breast cancer diagnosis using different mammography databases. Since these methods often have different pros and cons, which may confuse doctors and researchers, an elaborate comparison and examination among them is urgently needed for practical breast cancer diagnosis. In this study, we conducted a comprehensive comparative study of the state-of-the-art machine learning methods that are promising in breast cancer diagnosis. For this purpose we analyze the largest mammography diagnosis database: Digital Database for Screening Mammography (DDSM). We considered various approaches for feature extraction including principal component analysis (PCA), nonnegative matrix factorization (NMF), spatial-temporal discriminant analysis (STDA) and those for classification including linear discriminant analysis (LDA), random forests (RaF), k-nearest neighbors (kNN), as well as deep learning methods including convolutional neural networks (CNN) and stacked sparse autoencoder (SSAE). This paper can serve as a guideline and useful clues for doctors who are going to select machine learning methods for their breast cancer computer-aided diagnosis (CAD) systems as well for researchers interested in developing more reliable and efficient methods for breast cancer diagnosis.
Rocznik
Strony
841--848
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • School of Automation, Guangdong University of Technology, Guangzhou, China.
autor
  • School of Automation, Guangdong University of Technology, Guangzhou, China.
autor
  • School of Automation, Guangdong University of Technology, Guangzhou, China.
  • Tensor Learning Unit, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan.
autor
  • Skolkovo Institute of Science and Technology (SKOLTECH), 143026 Moscow, Russia
  • System Research Institute, Polish Academy of Sciences, Warsaw 00-901, Poland.
  • Hangzhou Dianzi University, College of Computer Science, Hangzhou 310018, China
Bibliografia
  • [1] C. DeSantis, J. Ma, L. Bryan, et al., “Breast cancer statistics, 2013”, CA: A Cancer Journal for Clinicians 64 (1), 52–62 (2014).
  • [2] R.L. Siegel, K.D. Miller, and A. Jemal, “Cancer statistics, 2018”, CA: A Cancer Journal for Clinicians 68 (1), 7–30 (2018).
  • [3] S. Yoon and S. Kim, “Adaboost-based multiple svm-rfe for classification of mammograms in ddsm”, BMC Medical Informatics and Decision Making 9 (1), S1 (2009).
  • [4] S. Dhahbi, W. Barhoumi, and E. Zagrouba, “Breast cancer diagnosis in digitized mammograms using curvelet moments”, Computers in Biology and Medicine 64, 79–90 (2015).
  • [5] A.M. Abdel-Zaher and A.M. Eldeib, “Breast cancer classification using deep belief networks”, Expert Systems with Applications 46, 139–144 (2016).
  • [6] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems, 2012, 1097–1105.
  • [7] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, et al., “Convo lutional neural networks for speech recognition”, IEEE/ACM Transactions on Audio, Speech, and Language Processing 22 (10), 1533–1545 (2014).
  • [8] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection”, Advances in Neural Information Processing Systems, 2013, 2553–2561.
  • [9] F.A. Spanhol, L.S. Oliveira, C. Petitjean, et al., “Breast cancer histopathological image classification using convolutional neural networks”, Neural Networks (IJCNN), 2016 International Joint Conference on, IEEE, 2016, 2560–2567.
  • [10] A. Dubrovina, P. Kisilev, B. Ginsburg, et al., “Computational mammography using deep neural networks”, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6 (3), 1–5 (2016).
  • [11] K. Sharma and B. Preet, “Classification of mammogram images by using cnn classifier”, Advances in Computing, Communications and Informatics (ICACCI), 2016 International Conference on, IEEE, 2016, 2743–2749.
  • [12] J. Kurek, B. Swiderski, S. Osowski, et al., “Deep learning versus classical neural approach to mammogram recognition”, Bulletin of the Polish Academy of Sciences (Accepted).
  • [13] J. Xu, L. Xiang, Q. Liu, et al., “Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology im- ages”, IEEE Transactions on Medical Imaging 35 (1), 119–130 (2016).
  • [14] M.A. Mazurowski, J.Y. Lo, B.P. Harrawood, et al., “Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis”, Journal of Biomedical Informatics 44 (5), 815–823 (2011).
  • [15] M. Heath, K. Bowyer, D. Kopans, et al., “The digital database for screening mammography”, Digital Mammography 431–434 (2000).
  • [16] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis”, Chemometrics and Intelligent Laboratory Systems 2 (1‒3), 37–52 (1987).
  • [17] G. Zhou, A. Cichocki, and D.P. Mandic, “Common components analysis via linked blind source separation”, Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, IEEE, 2015, 2150–2154.
  • [18] G. Zhou, A. Cichocki, Y. Zhang, et al., “Group component analysis for multiblock data: Common and individual feature extraction”, IEEE Transactions on Neural Networks and Learning Systems 27 (11), 2426–2439 (2016).
  • [19] C.-J. Lin, “Projected gradient methods for nonnegative matrix factorization”, Neural Computation 19 (10), 2756–2779 (2007).
  • [20] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix factorization”, Advances in Neural Information Processing Systems, 2001, 556–562.
  • [21] D.D. Lee and H.S. Seung, “Learning the parts of objects by non-negative matrix factorization”, Nature 401 (6755), 788 (1999).
  • [22] D. Guillamet, B. Schiele, and J. Vitria, “Analyzing non-negative matrix factorization for image classification”, Pattern Recognition, 2002. Proceedings. 16th International Conference on, IEEE, 2002, vol. 2, 116–119.
  • [23] Y. Zhang, G. Zhou, Q. Zhao, et al., “Spatial-temporal discriminant analysis for erp-based brain-computer interface”, IEEE Transactions on Neural Systems and Rehabilitation Engineering 21 (2), 233–243 (2013).
  • [24] Y. Zhang, G. Zhou, J. Jin, et al., “Sparse bayesian classification of eeg for brain–computer interface”, IEEE Transactions on Neural Tetworks and Learning Systems 27 (11), 2256–2267 (2016).
  • [25] Y. Zhang, C.S. Nam, G. Zhou, et al., “Temporally constrained sparse group spatial patterns for motor imagery BCI”, IEEE Transactions on Cybernetics (Accepted).
  • [26] J. Ye, R. Janardan, and Q. Li, “Two-dimensional linear discriminant analysis”, Advances in Neural Information Processing Systems, 2004, 1569–1576.
  • [27] L. Zhang and P.N. Suganthan, “Random forests with ensemble of feature spaces”, Pattern Recognition 47 (10), 3429–3437 (2014).
  • [28] L.E. Peterson, “K-nearest neighbor”, Scholarpedia 4 (2), 1883 (2009).
  • [29] Y. LeCun, B. Boser, J.S. Denker, et al., “Backpropagation applied to handwritten zip code recognition”, Neural Computation 1 (4), 541–551 (1989).
  • [30] N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A simple way to prevent neural networks from overfitting”, The Journal of Machine Learning Research 15 (1), 1929–1958 (2014).
  • [31] Y. Bengio, P. Lamblin, D. Popovici, et al., “Greedy layer-wise training of deep networks”, Advances in Neural Information Processing Systems, 2007, 153–160.
  • [32] C. Poultney, S. Chopra, Y. L. Cun, et al., “Efficient learning of sparse representations with an energy-based model”, Advances in Neural Information Processing Systems, 2007, 1137–1144.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c49c94f-8923-44d1-bf09-2559e673b642
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.