PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear modeling and analysis of a shock absorber with a bypass

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model of a mono-tube shock absorber with a bypass is proposed in this paper. It is shown that the application of an additional flow passage (bypass) causes changes to the damping force characteristics when the excitation amplitudes are large. In such cases, the damping force values increase, thereby improving safety of the ride. For small excitation amplitudes, the shock absorber behaves in a similar fashion as shock absorbers without a bypass, ensuring a high comfort level of the ride on roads with smooth surfaces.
Rocznik
Strony
615—629
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Kraków, Poland
Bibliografia
  • 1. Alonso M., Comas Á., 2006, Modelling a twin tube cavitating shock absorber, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220, 8, 1031-1040
  • 2. Cho B.H., Lee H.W., Oh J.S., 2002, Estimation technique of air content in automatic transmission fluid by measuring effective bulk modulus, International Journal of Automotive Technology, 3, 2, 57-61
  • 3. Czop P., Sławik D., 2011, A high-frequency first-principle model of a shock absorber and servo-hydraulic tester, Mechanical Systems and Signal Processing, 25, 6, 1937-1955
  • 4. Farjoud A., Ahmadian M., Craft M., Burke W., 2012, Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance, Nonlinear Dynamics, 67, 2, 1437-1456
  • 5. Ferdek U., Łuczko J., 2012, Modeling and analysis of a twin-tube hydraulic shock absorber, Journal of Theoretical and Applied Mechanics, 50, 2, 627-638
  • 6. Ferdek U., Łuczko J., 2015, Performance comparison of active and semi-active SMC and LQR regulators in a quarter-car model, Journal of Theoretical and Applied Mechanics, 53, 4, 811-822
  • 7. Ferdek U., Łuczko J., 2016, Vibration analysis of a half-car model with semi-active damping, Journal of Theoretical and Applied Mechanics, 54, 2, 321-332
  • 8. Gołdasz J., 2015, Theoretical study of a twin-tube magnetorheological damper concept, Journal of Theoretical and Applied Mechanics, 53, 4, 885-894
  • 9. King L., 2014, Adjustable internal bypass shock absorber featuring a fluid flow regulator, U.S. Patent No. 8,820,495
  • 10. Lee C.T., Moon B.Y., 2006, Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling, Mechanical Systems and Signal Processing, 20, 2, 373-388
  • 11. Manring N.D., 1997, The effective fluid bulk-modulus within a hydrostatic transmission, Journal of Dynamic Systems, Measurement, and Control, 119, 3, 462-466
  • 12. Marking J., 2014, Bypass for a suspension damper, U.S. Patent No. 8,627,932
  • 13. Merritt H.E., 1967, Hydraulic Control Systems, John Wiley & Sons
  • 14. Norgaard B.M., Cimins D.J., 2009, Fluid flow regulation of a vehicle shock absorber/damper, U.S. Patent No. 7,628,259
  • 15. Purdy D.J., 2000, Theoretical and experimental investigation into an adjustable automotive damper, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214, 265-283
  • 16. Ramos J.C., Rivas A., Biera J., Sacramento G., Sala J.A., 2005, Development of a thermal model for automotive twin-tube shock absorbers, Applied Thermal Engineering, 25, 11, 1836-1853
  • 17. Sapiński B., Rosół M., 2007, MR damper performance for shock isolation, Journal of Theoretical and Applied Mechanics, 45, 1, 133-145
  • 18. Silveira M., Pontes B.R., Balthazar J.M., 2014, Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles, Journal of Sound and Vibration, 333, 7, 2114-2129
  • 19. Talbott M.S., Starkey J., 2002, An experimentally validated physical model of a high-performance mono-tube damper, SAE Technical Paper
  • 20. Titurus B., Du Bois J., Lieven N., Hansford R., 2010, A method for the identification of hydraulic damper characteristics from steady velocity inputs, Mechanical Systems and Signal Processing, 24, 8, 2868-2887
  • 21. Van de Ven J.D., 2013, On fluid compressibility in switch-mode hydraulic circuits – Part I: Modeling and analysis, Journal of Dynamic Systems, Measurement and Control, 135, 2, 021013
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c47e2b3-836b-4eac-9438-4edc5dd6f99f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.