Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Erosion, a major threat to the safety and reliability of piping components, can significantly impact their integrity and functionality. This study employs computational fluid dynamics (CFD) to systematically investigate the erosion behavior of four elbow designs (standard 90- degree elbow, 18-degree gored elbow, 22.5-degree gored elbow, and 30- degree gored elbow) subjected to multiphase air-sand and water-sand flows. Our primary objective is to identify the optimal elbow design that effectively mitigates erosion and enhances the safety and reliability of piping systems. Our findings reveal that the 22.5-degree gored elbow exhibits significantly lower erosion rates compared to other designs, particularly in air-sand flows, making it the superior choice for reducing erosion by up to 32% compared to the standard elbow. However, the standard 90-degree elbow demonstrates greater erosion resistance in water-sand flows. This research contributes valuable insights for selecting the optimal elbow design in multiphase flow, ultimately enhancing the design and longevity of piping systems.
Czasopismo
Rocznik
Tom
Strony
art. no. 190362
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, College of Electrical and Mechanical Engineering,, National University of Sciences and Technology, Islamabad, Pakistan
autor
- Department of Mechanical Engineering, College of Electrical and Mechanical Engineering,, National University of Sciences and Technology, Islamabad, Pakistan
autor
- Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, Poland
autor
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
autor
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
autor
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, Malaysia
Bibliografia
- 1. Beyralvand D, Banazadeh F, Moghaddas R. Numerical investigation of novel geometric solutions for erosion problem of standard elbows in gas-solid flow using CFD-DEM. Results in Engineering. 2023;17:101014. https://doi.org/10.1016/j.rineng.2023.101014
- 2. Huang J, Wen J, Li H, Xia Y, Tan S, Xiao H, Duan W, Hu J. Particle erosion in 90-Degree elbow pipe of pneumatic conveying System: Simulation and validation. Computers and Electronics in Agriculture. 2024;216:108534. https://doi.org/10.1016/j.compag.2023.108534
- 3. Li Z, Wei X, Yi Z, Ma Z, Yu Y, Wang W. Numerical analysis of gas-liquid-solid erosion characteristics of the oil and gas multiphase pump. Engineering Failure Analysis. 2024;157:107889. https://doi.org/10.1016/j.engfailanal.2023.107889
- 4. Lin N, Arabnejad H, Shirazi SA, McLaury BS, Lan H. Experimental study of particle size, shape and particle flow rate on Erosion of stainless steel. Powder Technology. 2018;336:70-9. https://doi.org/10.1016/j.powtec.2018.05.039
- 5. Li A, Wang Z, Zhu L, Wang Z, Shi J, Yang W. Design optimization of guide vane for mitigating elbow erosion using computational fluid dynamics and response surface methodology. Particuology. 2022;63:83-94. https://doi.org/10.1016/j.partic.2021.02.006
- 6. Liu Xq, Liu F, Ji H, Li N, Wang C, Lin G. Particle erosion transient process visualization and influencing factors of the hydraulic servo spool valve orifice. Flow Measurement and Instrumentation. 2023;89:102273. https://doi.org/10.1016/j.flowmeasinst.2022.102273
- 7. Yao L, Liu Y, Xiao Z, Feng Z. Investigation on tee junction erosion caused by sand-carrying fracturing fluid. Tribology International. 2023;179:108157. https://doi.org/10.1016/j.triboint.2022.108157
- 8. Basyouny A. Experimental validation of numerical two-phase flow in a horizontal separator. Results in Engineering. 2022;15:100476. https://doi.org/10.1016/j.rineng.2022.100476
- 9. Zhao X, Cao X, Zhang J, Cao H, Xie Z, Xiong N. Numerical investigation and dimensionless erosion laws of solid particle erosion in plugged tees. Powder Technology. 2022;402:117342. https://doi.org/10.1016/j.powtec.2022.117342
- 10. Mazumder QH. S-bend erosion in particulated multiphase flow with air and sand. The Journal of Computational Multiphase Flows. 2016;8(3):157-66. https://doi.org/10.1177/1757482X16668363
- 11. Khan R, Mourad AHI, Seikh AH, Petru J, H.Ya H. Erosion impact on mild steel elbow pipeline for different orientations under liquid-gas-sand annular flow. Engineering Failure Analysis. 2023;153:107565. https://doi.org/10.1016/j.engfailanal.2023.107565
- 12. Khan R, H. Ya H, Pao W, Majid MAA, Ahmed T, Ahmad A, Alam MA, Azeem M, Iftikhar H. Effect of Sand Fines Concentration on the Erosion-Corrosion Mechanism of Carbon Steel 90° Elbow Pipe in Slug Flow. Materials. 2020;13(20):4601. https://doi.org/10.3390/ma13204601
- 13. Solnordal CB, Wong CY, Boulanger J. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow. Wear. 2015;336-337:43-57. https://doi.org/10.1016/j.wear.2015.04.017
- 14. Mazumder QH, Shirazi SA, McLaury BS, Shadley JR, Rybicki EF. Development and validation of a mechanistic model to predict solid particle erosion in multiphase flow. Wear. 2005;259(1):203-7. https://doi.org/10.1016/j.wear.2005.02.109
- 15. Kesana NR, Grubb SA, McLaury BS, Shirazi SA. Ultrasonic Measurement of Multiphase Flow Erosion Patterns in a Standard Elbow. Journal of Energy Resources Technology. 2013;135(3). https://doi.org/10.1115/1.4023331
- 16. Abduljabbar A, Mohyaldinn ME, Younis O, Alghurabi A, Alakbari FS. Erosion of sand screens by solid particles: a review of experimental investigations. Journal of Petroleum Exploration and Production Technology. 2022;12(8):2329-45. https://doi.org/10.1007/s13202-022-01467-4
- 17. Parsi M, Najmi K, Najafifard F, Hassani S, McLaury BS, Shirazi SA. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. Journal of Natural Gas Science and Engineering. 2014;21:850-73. https://doi.org/10.1016/j.jngse.2014.10.001
- 18. Peng W, Ma L, Wang P, Cao X, Xu K, Miao Y. Experimental and CFD investigation of flow behavior and sand erosion pattern in a horizontal pipe bend under annular flow. Particuology. 2023;75:11-25. https://doi.org/10.1016/j.partic.2022.06.003
- 19. Xiao F, Luo M, Huang F, Zhou M, An J, Kuang S, Yu A. CFD–DEM investigation of gas-solid flow and wall erosion of vortex elbows conveying coarse particles. Powder Technology. 2023:118524. https://doi.org/10.1016/j.powtec.2023.118524
- 20. Liu J, BaKeDaShi W, Li Z, Xu Y, Ji W, Zhang C, Cui G, Zhang R. Effect of flow velocity on erosion–corrosion of 90-degree horizontal elbow. Wear. 2017;376-377:516-25. https://doi.org/10.1016/j.wear.2016.11.015
- 21. Duarte CAR, de Souza FJ, dos Santos VF. Mitigating elbow erosion with a vortex chamber. Powder Technology. 2016;288:6-25. https://doi.org/10.1016/j.powtec.2015.10.032
- 22. Zhu H, Li S. Numerical analysis of mitigating elbow erosion with a rib. Powder Technology. 2018;330:445-60. https://doi.org/10.1016/j.powtec.2018.02.046
- 23. Zhou H, Zhang Y, Bai Y, Zhao H, Lei Y, Zhu K, Ding X. Study on reducing elbow erosion with swirling flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;630:127537. https://doi.org/10.1016/j.colsurfa.2021.127537
- 24. Duarte CAR, de Souza FJ, Venturi DN, Sommerfeld M. A numerical assessment of two geometries for reducing elbow erosion. Particuology. 2020;49:117-33. https://doi.org/10.1016/j.partic.2019.01.004
- 25. Duarte CAR, de Souza FJ. Innovative pipe wall design to mitigate elbow erosion: A CFD analysis. Wear. 2017;380-381:176-90. https://doi.org/10.1016/j.wear.2017.03.015
- 26. Vieira RE, Mansouri A, McLaury BS, Shirazi SA. Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technology. 2016;288:339-53. https://doi.org/10.1016/j.powtec.2015.11.028
- 27. Oka YI, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear. 2005;259(1):95-101. https://doi.org/10.1016/j.wear.2005.01.039
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c44b39d-a9cb-4589-8b7f-a036e848bd31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.