Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the test results of horizontal hydraulic conductivity (k) of fen peats from eastern Poland. Three fen peatlands in the Lubartów Plateau (3 objects marked as LP1, LP2 and LP3) and two in the Siedlce Plateau (2 objects marked as SP1 and SP2) have been selected. Studied objects represent valley bogs type and are similar in peat thickness, but different in the occupied area. They are also vary in terms of botanic compositions and basic physical and chemical parameters of peats. The BAT permeameter was used to in-situ measurements of horizontal hydraulic conductivity. Horizontal hydraulic conductivity of studied peats varies from 1.3×10-8 m/s to 1.1×10-6 m/s. The lowest values of horizontal hydraulic conductivity were observed for silted (high-ash) carbonate peats and amorphous or pseudo-fibrous peats, while the highest values were observed for unsilted (low-ash) non-carbonate peats of fibrous structure. The analysis of variability of horizontal hydraulic conductivity showed that in each case the lowest values were observed for the bottom of the studied profile. The study allowed to indicate the specific areas within the peatlands differing in permeability and identify the role of individual objects as natural geological barriers.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
426--432
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- University of Warsaw, Department of Environmental Protection and Natural Resources, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
- University of Warsaw, Institute of Hydrogeology and Engineering Geology, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
- University of Warsaw, Institute of Hydrogeology and Engineering Geology, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
- 1. Allen, S.J., McKay, G., Porter, J.F., 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280: 322-333.
- 2. Bear, J., 1972. Dynamics of Fluids in Porous Media. American Elsevier, New York.
- 3. Beckwith, C.W., Baird, A.J., Heathwaite, A.L., 2003a. Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. I: laboratory measurements. Hydrological Processes, 17: 89-101.
- 4. Beckwith, C.W., Baird, A.J., Heathwaite, A.L., 2003b. Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. II: modelling the effects on groundwater flow. Hydrological Processes, 17: 103-113.
- 5. Boelter, D.H., 1965. Hydraulic conductivity of peats. Soil Science, 100: 227-231.
- 6. Borkowski, A., Rydelek, P., Szala, M., 2013. Adsorption studies of azotetrazolate and 3, 6-dihydrazinotetrazine on peat. Journal of Environmental Science and Health, Part A, 48: 905-911.
- 7. Borys, M., 1993. Niskie nasypy z miejscowych gruntów organicznych dla potrzeb budownictwa wodno-melioracyjnego (in Polish). Wydawnictwo IMUZ, Falenty.
- 8. Dai, T.S., Sparling, J.H., 1973. Measurement of hydraulic conductivity of peats. Canadian Journal of Soil Science, 53: 21-26.
- 9. Dorn, M., Tantiwanit, W., 2001. New methods for searching for waste disposal sites in the Chiang Mai-Lamphun basin, northern Thailand. Environmental Geology, 40: 507-517.
- 10. Falkowska, E., 2003. Sorption of Pb and Cd by sediments of the polygenetic river valieys of the eastern part of the Polish Lowland. Geological Quarterly, 47 (2): 169-186.
- 11. Falkowska, E., 2009. Glacial morphogenesis of uplands of the Warta Glaciation in Poland as a control on heavy metal distribution in deposits. Geological Quarterly, 53 (3): 293-304.
- 12. Fredlund, D.G., Xing, A., Fredlund, M.D., Barbour, S.L., 1996. The relationship of the unsaturated soil shear to the soil-waier characteristic curve. Canadian Geotechnical Journal, 33: 440-448.
- 13. Ho, Y.S., McKay, G., 1999. The sorption of lead (II) ions on peat. Water Research, 33: 578-584.
- 14. Hoag, R.S., Price, J.S., 1995. A field-scale, natural gradient solute transport experiment in peat at a Newfoundland blanket bog. Journal of Hydrology, 172: 171-184.
- 15. Hobbs, N.B., 1986. Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology, 19: 7-80.
- 16. Ingram, H.A.P., 1978. Soil layers in mires: function and terminology. Journal of Soil Science, 29: 224-227.
- 17. Kennedy, G.W., Price, J.S., 2005. A conceptual model of volume-change controls on the hydrology of cutover peats. Journal of Hydrology, 302: 13-27.
- 18. Kyzioł, J., 2002. Effect of phys i cal properties and cation exchange capacity on sorption of heavy metals onto peats. Polish Journal of Environmental Studies, 11: 713-718.
- 19. Langer, M., 1998. Engineering geological evaluation of geological barrier rocks at landfills and repositories. Environmental Geology, 35: 19-27.
- 20. Ma, W., Tobin, J.M., 2004. Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochemical Engineering Journal, 18: 33-40.
- 21. Majer, E., 2007. Metodyka doboru gruntu w ramach projektowania mineralnych przesłon izolacyjnych składowisk odpadów (in Polish). Geologos, 11: 239-252.
- 22. Okruszko, H., 1974. Zasady podziału gleb organicznych (in Polish). Wiadomości Instytutu Melioracji i Użytków Zielonych, 12: 19-38.
- 23. Okruszko, H., 1976. Zasady rozpoznawania i podziału gleb hydrogenicznych z punktu widzenia potrzeb melioracji (in Polish). Biblioteczka Wiadomości Instytutu Melioracji i Użytków Zielonych, 52: 7-54.
- 24. Okruszko, H., 1994. System of hydrogenic soil classification used in Poland. Biblioteczka Wiadomości Instytutu Melioracji i Użytków Zielonych, 84: 5-27.
- 25. Rizzuti, A.M., Cohen, A.D., Stack, E.M., 2004. Using hydraulic conductivity and micropetrography to assess waier flow through peat-containing wetlands. International Journal of Coal Geology, 60: 1-16.
- 26. Rydelek, P., 2006. Wpływ zróżnicowania właściwości fizykochemicznych torfów niskich na zdolności izolacyjne torfowisk wysoczyzny lubartowskiej (in Polish). Ph.D. thesis. Arch. UW, Warszawa.
- 27. Rydelek, P., 2011. Peatlands of Lubartów Upland as the potential natural geological barriers (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 446: 407-416.
- 28. Rydelek, P., 2013. Origin and composition of mineral constituents of fen peats from Eastern Poland. Journal of Plant Nutrition, 36: 911-928.
- 29. Sapek, B., 1982. Pomiar sorpcji miedzi jako test oceny pojemności sorpcyjnej utworów organicznych (in Polish). Roczniki Gleboznawcze, 38: 343-349.
- 30. Syrovetnik, K., Malmström, M.E., Neretnieks, I., 2007. Accumulation of heavy metals in the Oostriku peat bog, Estonia: determinaron of binding processes by means of sequeniial leaching. Environmental Pollution, 147: 291-300.
- 31. Torstensson, B.A., Petsonk, A.M., 1986. A device for in-situ measurement of hydraulic conductivity. In: Proceedings of the 4th International Seminar Field Instrumentation and In-situ Measurements: 157-162. Nanyang Technical Institute, Singapore.
- 32. Twardowska, I., Kyzioł, J., 1996. Binding and chemical fractionation of heavy metals in typical peat matter. Fresenius' Journal of Analytical Chemistry, 354: 580-586.
- 33. Twardowska, I., Kyzioł, J., Goldrath, T., Avnimelech, Y., 1999. Adsorption of zinc onto peat from peatlands of Poland and Israel. Journal of Geochemical Exploration, 66: 387-405.
- 34. Zhou, W., Li, G., 2001. Geological barrier - a natural rock stratum for preventing confined karst water from flowing into mines in North China. Environmental Geology, 40: 1003-1009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c43e256-e190-4033-8c6c-9525eb464f7b