PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Human Factors in Matching Images to Standards: Assimilation and Time Order Error

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: This study examines recognition performance to depend on image context and time order error. Recognition of standard images is a basic process in medical image analysis. Methods: After the presentation of a standard square, 20 subjects identified the standard within a variety of 7 squares. The choice was between the standard and either 3 smaller and 3 larger squares, 5 smaller and 1 larger square, or 5 larger and 1 smaller square (context conditions). Results: Multilevel regression analysis showed large individual differences in judgments (P < .001). Context induced assimilation of judgments to the medium-sized square within response options (P < .001). Negative time order error in rapid judgments caused an underestimation of the standard (P < .001). Conclusions: Assimilation of judgments and time order error might be a threat to the reliability of medical image analysis. Some procedural recommendations are derived to reduce bias and increase patient safety in radiology.
Rocznik
Strony
399--407
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Psychology, University of Berne, Berne, Switzerland
Bibliografia
  • 1. Mannion AF, Elfering A. Predictors of surgical outcome. In: Boos N, Aebi M, editors. Spinal disorders—fundamentals of diagnosis and treatment. Berlin, Germany: Springer. In press.
  • 2. Berlin L. Malpractice issues in radiology— defending the “missed” radiographic diagnosis. AJR 2001;176:317–22.
  • 3. Espinosa J, Nolan T. Reducing errors made by emergency physicians in interpreting radiographs: longitudinal study. BMJ 2000;320:737–40.
  • 4. Elfering A, Semmer NK, Birkhofer D, Zanetti M, Hodler J, Boos N. Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine 2002;27:125–34.
  • 5. Parent E, Battié MC, Videman T. Quantitative MRI measures of disc bulging/ herniation: development and reliability [paper presented at the 31st Annual ISSLS Meeting, Porto, Portugal]; 2004.
  • 6. Raininko R, Manninen H, Battié MC, Gibbons LE, Gill K, Fisher LD. Observer variability in the assessment of disc degeneration on magnetic resonance images of the lumbar and thoracic spine. Spine 1995;20:1029–35.
  • 7. Garland LH. Studies on the accuracy of diagnostic procedures. AJR 1959;82:25–38.
  • 8. Carmody DP, Nodine CF, Kundel HL. An analysis of perceptual and cognitive factors in radiographic interpretation. Perception 1980;9:339–44.
  • 9. Kundel HL. Perception errors in chest radiography. Seminars in Resp Med 1989;10:203–10.
  • 10. Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med 2003,78:775–80.
  • 11. Graber M, Gordon R, Franklin N. Reducing diagnostic errors in medicine: what’s the goal? Acad Med 2002;77:981–92.
  • 12. Berlin L. Malpractice issues in radiology: perceptual errors. AJR 1996;167:587–90.
  • 13. Berlin L, Hendrix RW. Malpractice issues in radiology: Perceptual errors and negligence. AJR 1998;170:863–7.
  • 14. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001;26:1873–8.
  • 15. Hellström A. Comparison is not just subtraction: effects of time- and space-order on subjective stimulus difference. P & P 2003;65:1161–77.
  • 16. Elfering A. Psychophysikalische Methoden und Ergebnisse in der Bezugssystemforschung: Die Rolle des Gedächtnisses im Reizgeneralisationsversuch [doctoral dissertation]. University of Frankfurt, Frankfurt, Germany; 1997.
  • 17. Spetch MA, Cheng K, Clifford CWG. Peak shift but not range effects in recognition of faces. Learn Motiv 2004;35:221–41.
  • 18. Webster MA, Kaping D, Mizokami Y, Duhamel P. Adaptation to natural facial categories. Nature 2004;428:557–61.
  • 19. Beam CA, Sullivan DC, Layde PM. Effect of human variability on independent double reading in screening mammography. Acad Rad 1996;3:891–7.
  • 20. Parducci A. Direction of shift in the judgment of single stimuli. J Exp Psychol 1956;51:169–78.
  • 21. Hox JJ. Multilevel analysis. Mahwah, NJ, USA: Erlbaum; 2002.
  • 22. Goldstein H, Browne W, Rabash J. Tutorial in biostatistics: multilevel modelling of medical data. Statist Med 2002;21:3291– 315.
  • 23. Smith MJ. Error and variation in diagnostic radiology. Springfield, IL, USA: Thomas; 1967.
  • 24. American College of Radiology. Mammography quarterly standards act of 1992. Retrieved May 17, 2004, from: //www.acr.org
  • 25. Carmody DP, Kundel HL, Nodine CF. Comparison scans while reading chest images: taught but not practiced. Invest Radiol 1984;19:462–6.
  • 26. Kundel HL, Nodine CF, Carmody DP. Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol 1978;13:175–81.
  • 27. Wackenheim A, Zollner G. Symetrie, asymetrie et dissymetrie. Ann Radiol 1987;30:60–4.
  • 28. Reiner BI, Siegel EL, Siddiqui K. Evolution of the digital revolution: a radiologist perspective. Journal of Digital Imaging 2003;16:324–30.
  • 29. Yerushalmy J. The statistical assessment of the variability in observer perception and description of roentgenographic pulmonary shadows. Radiol Clin North Am 1969;7:381–92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c431898-d917-47d2-892f-e3a514e113e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.