PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size-fractionated primary production in the south-eastern Black Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Size-fractionated primary production (PP) and chlorophyll-a (Chl-a) with phytoplankton abundance and nutrients were investigated in the south-eastern Black Sea from November 2014 to August 2015. A 14C radio-tracing technique was used to estimate phytoplankton primary production. C-14 experiments revealed that total PP ranged from 295 mgC m−2 d−1 to 5931 mgC m−2 d−1 along the study area. Size-fractionated PP varied from 84 to 1848 mgC m−2 d−1, from 96 to 3156 mgC m−2 d−1 and from 56 to 3363 mgC m−2 d−1 for pico-, nano- and microphytoplankton, respectively. Overall, winter (4163 mgC m−2 d−1) and spring (5931 mgC m−2 d−1) were the most productive seasons, which coincided with high phytoplankton abundance. Contributions of microphytoplankton and nanophytoplankton were prominent in spring with maximum PP values. Winter was the second productive season with high contributions of nano- and microphytoplankton PP. Summer and autumn were less productive seasons, which were characterised by a high contribution of pico- and nanophytoplankton PP. Dinoflagellates were represented with the highest species richness (68 species, 53.54%) and diatoms were the second group along the area. Diatoms and other phytoplankton species (mainly Emiliania huxleyi) were the most abundant groups in terms of quantitative contribution. The results show that microphytoplankton along the study area are responsible for the majority of PP. However, the measured high Chl-a against low size-fractionated PP clearly indicates that smaller groups (i.e., pico- and nanophytoplankton) were dominant during these periods. Hence, the quantification of size-fractionated PP rates together with ecological indicators will allow for a more comprehensive assessment of the Black Sea ecosystem.
Czasopismo
Rocznik
Strony
244--266
Opis fizyczny
Bibliogr. 113 poz,. map., rys.,tab., wyk.
Twórcy
  • Dept. of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
  • Dept. of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
Bibliografia
  • 1. Agirbas, E., 2010. Interaction of pigment concentration and primary production with environmental condition in the Southeastern Black Sea. PhD Thesis, Karadeniz Technical University.
  • 2. Agirbas, E., Feyzioglu, A.M., Kopuz, U., 2014. Seasonal changes of phytoplankton chlorophyll a, primary production and their relation in the Continental Shelf Area of the South-Eastern Black Sea. Turk. J. Fish. Aquat. Sc. 14, 713-726. https://doi.org/10.4194/1303- 2712- v14_3_14
  • 3. Agirbas, E., Feyzioglu, A.M., Kopuz, U., Llewellyn, C.A., 2015. Phytoplankton community composition in the south-eastern Black Sea determined with pigments measured by HPLC-CHEMTAX analyses and microscopy cell counts. J. Mar. Biol. Assoc. UK. 95 (1), 35-52. https://doi.org/10.1017/S0025315414001040
  • 4. Agirbas, E., Tilstone, G., Feyzioglu, A.M., 2017. Contrasting wind regimes cause differences in primary Production in the Black Sea Eastern and Western Gyres. Turk. J. Fish. Aquat. Sc. 17, 981-994. https://doi.org/10.4194/1303- 2712- v17_5_13
  • 5. Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., Hardman-Mountford, N., 2009. Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995-2005. Deep Sea Res. Pt. II 56 (15), 899-917. https://doi.org/10.1016/j.dsr2.2008.09.017
  • 6. Aldridge, D., Purdie, D.A., Zubkov, M.V., 2014. Growth and survival of Neoceratium hexacanthum and Neoceratium candelabrum under simulated nutrient-depleted conditions. J. Plankton Res. 36, 439-449. https://doi.org/10.1093/plankt/fbt098
  • 7. APHA, 1998. Standard Methods for the examination of water and waste water, 20th Edn. American Public Health Association, Washington, D.C., 874 pp.
  • 8. Arai, M.N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451, 69-87. https://doi.org/10.1023/A:1011883905394
  • 9. Aumont, O., Maier-Reimer, E., Blain, S., Monfray, P., 2003. An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem. Cy. 17. https://doi.org/10.1029/2001GB001745
  • 10. Balech, E., 1988. Los Dinoflagelados del Atlántico Sudoccidental. Publ. Espec. Inst. Esp. Oceanography, Madrid, 310 pp.
  • 11. Barnes, M.K., Tilstone, G.H., Suggett, D.J., Widdicombe, C.E., Bruun, J., Martinez-Vicente, V., Smyth, T.J., 2015. Temporal variability in total, micro- and nano-phytoplankton primary production at a coastal site in the Western English Channel. Prog. Oceanogr. 137, 470-483. https://doi.org/10.1016/j.pocean.2015.04.017
  • 12. Basturk, O., Saydam, C., Salihoglu, I., Eremeva, L.V., Konovalov, SK., Stoyanov, A., Dimitrov, A., Cociasu, A., Dorogan, L., Altabet, M., 1994. Vertical variation in the principle chemical properties of Black Sea in the autumn of 1991. Mar. Chem. 45, 149-165. https://doi.org/10.1016/0304-4203(94)90099-X
  • 13. Bat, L., Sahin, F., Satilmis, H.H., Ustun, F., Ozdemir, Z.B., Kideys, A.E., Shulman, G.E., 2007. The changed ecosystem of the Black Sea and its impact on anchovy fisheries. J. Fisher. Sci. 1 (4), 191-227, (in Turkish). https://doi.org/10.3153/jfscom.2007024
  • 14. Bat, L., Sezgin, M., Satilmis, H.H., Sahin, F, Ustun, F., Birinci-Ozdemir, Z., Baki, O.G., 2011. Biological diversity of the Turkish Black Sea coast. Turk. J. Fish. Aquat. Sci. 11, 683-692. https://doi.org/10.4194/1303-2712-v11_4_04
  • 15. Bingel, F., Kideys, A.E., Ozsoy, E., Tugrul, S., Basturk, O., Oguz, T., 1993. Stock assessment studies for the Turkish Black Sea coast. NATO-TU Fisheries, Final Report. METU, Institute of Marine Sciences.
  • 16. Bodeanu, N., 2002. Algal blooms in Romanian Black Sea waters in the last two decades of the 20th century. Cercatari Mar. 34, 7-22.
  • 17. Bodeanu, N., Andrei, C., Boicenco, L., Popa, L., Sburlea, A., 2004. A new trend of the phytoplankton structure and dynamics in the Romanian marine waters. Cercetari Mar. 35, 77-86.
  • 18. Bodeanu, N., Moncheva, S., Ruta, G., Popa, L., 1998. Long-term evolution of the algal blooms in Romanian and Bulgarian Black Sea waters. Cercetari Mar. 31, 37-55.
  • 19. Bologa, A.S., 1986. Planktonic Primary Productivity of the Black Sea: A Review. Thalassia Jugoslavica 21-22, 1-22.
  • 20. E. Agirbas and M. Bakirci Bologa, A.S., Bodeanu, N., Petran, A., Tiganus, V., Zaitsev, Yu. P., 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bulletin de L’Institute Oceanographique 15, CIESM Science Series, Monaco, 85-110.
  • 21. Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res. 109. https://doi.org/10.1029/2004JC002419
  • 22. Cermeno, P., Maranon, E., Rodriguez, J., Fernandez, E., 2005. Large-sized phytoplankton sustain higher carbon specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar. Ecol. Progr. Ser. 297, 51-60. https://doi.org/10.3354/meps297051
  • 23. Cho, B.C., Azam, F., 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441-443. https://doi.org/10.1038/332441a0
  • 24. Coban-Yildiz, Y., Tugrul, S., Ediger, D., Yilmaz, A., Polat, S.C., 2000. A comparative study on the abundance and elemental composition of POM in three interconnected basins: the Black, the Mar-mara and the Mediterranean Seas. Mediterr. Mar. Sci. 1, 51-63. https://doi.org/10.12681/mms.5
  • 25. Cociasu, A., Diaconu, V., Teren, L., Nae, I., Popa, L., Dorogan, L., Malciu, V., et al., 1997. Nutrient stocks on the Western shelf of the Black Sea in the last three decades. In: Özsoy, E., Mikaelyan, A. (Eds.), Sensitivity to change: Black Sea, Baltic and North Sea, NATO ASI Series. Kluwer Academic Publishers.
  • 26. Cociasu, A., Dorogan, L., Humborg, C., Popa, L., 1996. Long-term ecological changes in Romanian coastal waters of the Black Sea. Mar. Pollut. Bull. 32 (1), 32-38. https://doi.org/10.1016/0025-326X(95)00106-W
  • 27. Codispoti, L.A., Friederich, G.E., Murray, J.W., Sakamato, C.M., 1991. Chemical variability in the Black Sea: Implications of continuous vertical profiles that penetrated the oxic/anoxic interface. Deep-Sea Res 38, 691-710. https://doi.org/10.1016/S0198-0149(10)80004-4
  • 28. Curran, K., Brewin, R.J.W., Tilstone, G.H., Bouman, H.A., Hickman, A., 2018. Estimation of size-fractionated primary production from Satellite Ocean Colour in UK Shelf Seas. Remote Sens. 10, 1389. https://doi.org/10.3390/rs10091389
  • 29. Demidov, A.B., 2008. Seasonal dynamics and estimation of the annual primary production of phytoplankton in the Black Sea. Oceanology 5 (48), 664-678. https://doi.org/10.1134/S0001437008050068
  • 30. Ediger, D., Soydemir, N., Kideys, A.E., 2006. Estimation of phytoplankton biomass using HPLC pigment analysis in the Southwestern Black Sea. Deep-Sea Res Pt. I. 53, 1911-1922. https://doi.org/10.1016/j.dsr2.2006.04.018
  • 31. Eker-Develi, E., Kideys, A.E., 2003. Distribution of phytoplankton in the Southern Black Sea in summer 1996, spring and autumn 1998. J. Marine Syst. 39, 203-211. https://doi.org/10.1016/S0924-7963(03)00031-9
  • 32. Eker, E., 1999. Abundance and biomass of micro and nanophyto-plankton in the northwestern and southern Black Sea in 1995. Middle East Technical University, IMS, Erdemli, Icel, Turkey, 212 pp.
  • 33. Enriquez, C.E., Shapiro, G.I., Souza, A.J., Zatsepin, A.G., 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dynam. 55 (5—6), 476-489. https://doi.org/10.1007/s10236-005-0031-4
  • 34. Eppley, R.W., Peterson, B.J., 1979. Particulate organic-matter flux and planktonic new production in the Deep Ocean. Nature 282, 677-680. https://doi.org/10.1038/282677a0
  • 35. Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200-206. https://doi.org/10.1126/science.281.5374.200 Feyzioglu, A.M., 1996. Seasonal changes on phytoplankton dynamics in eastern Black Sea Ecosystem. Karadeniz Technical University, Trabzon, 120 pp.
  • 36. Feyzioglu, A.M., Seyhan, K., 2007. Phytoplankton Composition of South East Black Sea Coast. J. Black Sea/Mediterr. Environ. 13, 61-71.
  • 37. Fogg, G.E., 1991. The phytoplanktonic ways of life. New Phytol 118, 191-232. https://doi.org/10.1111/j.1469-8137.1991.tb00974.x
  • 38. Genc, N., 2018. Photic zone dynamics of phytoplankton size classes derived from pigments in the south-eastern Black Sea. Master Thesis. Recep Tayyip Erdogan University.
  • 39. Goldman, J.C., 1993. Potential role of large oceanic diatoms in new primary production. Deep-Sea Res. Pt. I 40, 159-168. https://doi.org/10.1016/0967-0637(93)90059-C
  • 40. Guidi, L., Stemmann, L., Jackson, G.A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M., Gorsky, G., 2010. Effects of phytoplankton community on production, size, and export of large aggregates: A World-Ocean analysis. Limnol. Oceanogr. 54 (6), 1951-1963. https://doi.org/10.1364/OE.20.011882
  • 41. Han, M.S., Furuya, K., 2000. Size and species-specific primary productivity and community structure of phytoplankton in Tokyo Bay. J. Plankton Res. 22, 1221-1235. https://doi.org/10.1093/plankt/22.7.1221
  • 42. Hay, B.J., Honjo, S., Kempe, S., Itekkot, V.A., Degens, E.T., Konuk, T., Izdar, E., 1990. Interannual variability in particle flux in the southwestern Black Sea. Deep-Sea Res. 37, 911-928. https://doi.org/10.1016/0198-0149(90)90103-3
  • 43. Hays, G.C., Richardson, A.J., Robinson, C., 2005. Climate change and marine plankton. Trends Ecol. Evol. 20, 337-344. https://doi.org/10.1016/j.tree.2005.03.004
  • 44. Hirata, T., Hardman-Mountford, N.J., Barlow, R., Lamont, T., Brewin, R.J.W., Smyth, T., Aiken, J., 2009. An inherent optical property approach to the estimation of size specific photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour: an initial assessment. Prog. Oceanogr. 83, 393-397. https://doi.org/10.1016/j.pocean.2009.07.019
  • 45. Honjo, S., Hay, B., Manganini, S.J., Degens, E.T., Kempe, S., Ittekkot, V.A., Izdar, E., Konuk, T., Benli, H.A., 1987. Seasonal cyclicity of lithogenic particle fluxes at a Southern Black Sea Sediment Trap Station. Mitt. Geol. Palaont. Inst., University of Hamburg, F.R.G. 19-39.
  • 46. Humborg, C., Ittekkot, V., Cociasu, A., Von Bodungen, B., 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386, 385-388. https://doi.org/10.1038/386385a0
  • 47. Jochem, F., Zeitzschel, B., 1989. Productivity regime and phytoplankton size structure in the tropical and subtropical North Atlantic in spring. Deep-Sea Res. Pt. II. 40, 495-519. https://doi.org/10.1016/0967-0645(93)90029-M
  • 48. Joint, I., Owens, N., Pomroy, A., Pomeroy, A., 1986. Seasonal production of photosynthetic picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28 (3), 251-258.
  • 49. Karadeniz, M.N., 2019. Phytoplankton pigment profiles and phytoplankton size classes along the South-Eastern Black Sea Ms. Thesis. Recep Tayyip Erdogan University.
  • 50. Kideys, A.E., 1994. Recent dramatic changes in the Black Sea ecosystem: The reason for the sharp decline in Turkish anchovy fisheries. J. Marine Syst. 5, 171-181. https://doi.org/10.1016/0924-7963(94)90030-2
  • 51. Kideys, A.E., 2002. Fall and Rise of the Black Sea Ecosystem. Science 297 (5586), 1482-1484. https://doi.org/10.1126/science.1073002
  • 52. Kideys, A.E., Kovalev, A.V., Shulman, G., Gordina, A., Bingel, F., 2000. A review of zooplankton investigations of the Black Sea over the last decade. J. Marine Syst. 24, 355-371. https://doi.org/10.1016/S0924-7963(99)00095-0
  • 53. Kiorboe, T., 1993. Turbulence, phytoplankton cell-size, and the structure of pelagic food webs. Adv. Mar. Biol. 29 (29), 1-72. https://doi.org/10.1016/S0065-2881(08)60129-7
  • 54. Koca, L., 2014. Temporal variation of Diatom/Dinoflagellate ratios and pigment composition along the South-Eastern coasts (Rize) of the Black Sea, Ms. Thesis. Recep Tayyip Erdogan University.
  • 55. Kopelevich, O.V., Burenkov, V.I., Ershova, S.V., Sheberstov, S.V., veEvdoshenko, M.A., et al., 2004. Application of SeaWiFS data for Studying Variability of Bio-Optical Characteristics in the Barents, Black and Caspian Seas. Deep Sea Research Pt. II 51, 1063-1091.
  • 56. Kopelevich, O.V., Sheberstov, S.V., Yunev, O., Basturk, O., Finenko, Z.Z., Nikonov, S., Vedernikov, V.I., 2002. Surface chlorophyll-a in the Black Sea over 1978-1986 derived from satellite and in situ data. J. Marine Syst. 3, 145-160. https://doi.org/10.1016/S0924-7963(02)00184-7
  • 57. Kopuz, U., 2012. Dynamics of picoplankton in microbial loop and their Impotence at pelagic food web in the South-Eastern Black Sea, PhD Thesis. Karadeniz Technical University.
  • 58. Le Quéré, C., Harrison, S.P., Prentice, I.C., Buitenhuis, E.T., Aumont, O., Bopp, L., 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol. 11, 2016-2040. https://doi.org/10.1111/j.1365-2486.2005.1004.x
  • 59. Maranon, E., Behrenfeld, M.J., Gonzalez, N., Mourino, B., Zubkov, M.V., 2003. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Progr. Ser. 257, 1-11. https://doi.org/10.3354/meps257001
  • 60. Maranon, E., Holligan, P.M., Barciela, R., Gonzalez, N., Mourino, B., Pazo, M.J., Varela, M., 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Progr. Ser. 216, 43-56. https://doi.org/10.3354/meps216043
  • 61. Margalef, R., 1965. Ecological correlation and relationship between primary producing and plankton structure. Mem. Ist. Ital. Idro-biol. 18, 355-364.
  • 62. McAndrew, P.M., Bjorkman, K.M., Church, M.J., Morris, P.J., Jachowski, N., Williams, P.J.L.B., Karl, D.M., 2007. Metabolic response of oligotrophic plankton communities to deep water nutrient enrichment. Mar. Ecol. Progr. Ser. 332, 63-75. https://doi.org/10.3354/meps332063
  • 63. McQuatters-Gollop, A., Mee, L.D., Raitsos, D.E., Shapiro, G.I., 2008. Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll. J. Marine Syst. 74, 649-658. https://doi.org/10.1016/j.jmarsys.2008.06.002
  • 64. McQuatters-Gollop, A., Raitsos, D.E., Edwards, M., Pradhan, Y.Mee, Lavender, L.D., Attrill, S.J., M, J., 2007. A long-term chlorophyll dataset reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient levels. Limnol. Oceanogr. 52, 635-648. https://doi.org/10.4319/lo.2007.52.2.0635
  • 65. Michaels, A.F., Silver, M.W., 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. Pt. I 35, 473-490. https://doi.org/10.1016/0198-0149(88)90126-4
  • 66. Mikaelyan, A.S., Chasovnikov, V.K., Kubryakov, A.A., Stanichny, S.V., 2017. Phenology and drivers of the winter—spring phytoplankton bloom in the open Black Sea: The application of Sverdrup’s hypothesis and its refinements. Prog. Oceanogr. 151, 163-176. https://doi.org/10.1016/j.pocean.2016.12.006
  • 67. Mikaelyan, A.S., Zatsepin, A.G., Chasovnikov, V.K., 2013. Long-term changes in nutrient supply of phytoplankton growth in the Black Sea. J. Marine Syst. 117-118, 53-64. https://doi.org/10.1016/j.jmarsys.2013.02.012
  • 68. Moncheva, S., Gotsis-Skretas, O., Pagou, K., Krastev, A., 2001. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuar. Coast. Shelf Sci. 53 (3), 281-295. https://doi.org/10.1006/ecss.2001.0767
  • 69. Moncheva, S., Krastev, A., 1997. Some aspects of phytoplankton long-term alterations off Bulgarian Black Sea shelf. In: Ozsoy, E., Mikhaelian, A. (Eds.), Sensitivity to Change: Black Sea Baltic Sea and North Sea. NATO ASI Series, Kluwer Acad. Publ., 79-94.
  • 70. Moreno-Ostos, E., Fernandez, A., Huete-Ortega, M., Mourino-Carballido, B., Calvo-Diaz, A., Moran, X.A.G., Maranon, E., 2011. Size-fractionated phytoplankton biomass and production in the tropical Atlantic. Sci. Mar. 75, 379-389. https://doi.org/10.3989/scimar.2011.75n2379
  • 71. Nelson, D.M., Treguer, P., Brzezinski, M.A., Leynaert, A., Queguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationships to biogenic sedimentation. Global Biogeochem. Cy. 9, 359-372. https://doi.org/10.1029/95GB01070
  • 72. Oguz, T., Aubrey, D.G., Latun, V.S., Demirov, E., Koveshnikov, L., Sur, H.I., Diaconu, V., Besiktepe, S., Duman, M., Limeburner, L., Eremeev, V., 1994. Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack’91. Deep-Sea Res. Pt. I 41 (4), 603-628. https://doi.org/10.1016/0967-0637(94)90045-0
  • 73. Oguz, T., Ediger, D., 2006. Comparison of in-situ and satellite derived chlorophyll pigment concentrations and impact of phytoplankton bloom on the sub-oxic layer structure in the western Black Sea during May-June 2001. Deep-Sea Res. Pt. II 53 (17—19), 1923-1933. https://doi.org/10.1016/j.dsr2.2006.07.001
  • 74. Oguz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Ozsoy, E., Kotovshchikov, V.V., Eremeev, V.V., Unluata, U., 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep-Sea Res. 40 (8), 1597-1612. https://doi.org/10.1016/0967-0637(93)90018-X
  • 75. Oguz, T., Velikova, V., Cociasu, A., Korchenko, A., 2008. State of the Environment Report 2001-2006/7, the State of Eutrophication, 83-112.
  • 76. Oguz, T., 2005. Black Sea Ecosystem response to climatic teleconnections. Oceanography 18 (2), 122-133. https://doi.org/10.5670/oceanog.2005.47-v18_2_133
  • 77. O’reilly, E.J., Zetlin, C., 1998. Seasonal, horizontal and vertical distribution of phytoplankton chlorophyll Northeast US Continental shelf ecosystems. Report NMFS 139. A Tech. Rep. the Fishery Bulletin. U.S. Department of Commerce, Seattle, WA, 126 pp.
  • 78. Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F., Dyble, J., Moisander, P.H., 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience 53, 953-964. https://doi.org/10.1641/0006-3568(2003)053[0953:PPAIOE]2.0.CO;2
  • 79. Platt, T., Rao, D.S., Irwin, B., 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301, 702-704. https://doi.org/10.1038/301702a0
  • 80. Platt, T., Sathyendranath, S., 2008. Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sens. Environ. 112, 3426-3436. https://doi.org/10.1016/j.rse.2007.10.016
  • 81. Poulton, A.J., Holligan, P.M., Hickman, A., Kim, Y.N., Adey, T.R., Stinchcombe, M.C., Holeton, C., Root, S., Woodward, E.M.S., 2006. Phytoplankton carbon fixation, chlorophyll biomass and diagnostic pigments in the Atlantic Ocean. Deep-Sea Res. Pt. II. 53, 1593-1610. https://doi.org/10.1016/j.dsr2.2006.05.007
  • 82. Rampi, L., Bernard, M., 1978. Key for the determination of Mediterranean pelagic diatoms. Comit. Naz. Energia Nucleare, Roma 71.
  • 83. Richardson, 1991. Comparison of 14C primary production determinations made by different laboratories. Mar. Ecol. Progr. Ser. 72, 189-201. https://doi.org/10.3354/MEPS072189
  • 84. Richardson, A.J., Schoeman, D.S., 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609-1612. https://doi.org/10.1126/science.1100958
  • 85. Riemann, B., Havskum, H., Thingstad, F., Bernard, C., 1995. The role of mixotrophy in pelagic environments. In: Joint, I. (Ed.), Molecular Ecology of Aquatic Microbes, NATO AS1 Series, Vol. 38. Springer-Verlag, Berlin, 87-114. https://doi.org/10.1007/978- 3- 642- 79923- 5_6
  • 86. Song, L., Wu, J., Du, J., Li, N., Wang, K., Wang, P., 2019. Comparison of two methods to assess the size structure of phytoplankton community assemblages, in Liaodong Bay. China. J. Ocean Univ. China (Oceanic and Coastal Sea Research) 18 (5), 1207-1215.
  • 87. https://doi.org/10.1007/s11802-019-3960-0
  • 88. Sorokin, Yu.I., 1983. The Black Sea. In: Ketchum, P.H. (Ed.), Estuaries and enclosed seas. Elsevier, Amsterdam, 253-291.
  • 89. Sorokin, Y.U., 1983. The Black Sea, In: Ecosystem of the World 26. In: Estuaries and Enclosed Seas, Edited by, Ketchum, B.H. Elsevier Scientific Publishing Company, New York, 253-292.
  • 90. Sorokin, Y.A., 2002. The Black Sea: ecology and oceanography. Biology of Inland Waters. Backhuys, Leiden, The Netherlands, 875 pp.
  • 91. Steemann-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer. 18, 117-140.
  • 92. Sur, H.I., Ozsoy, E., Ilyin, Y.P., Unluata, U., 1996. Coastal/deep ocean interactions in the Black Sea and their ecological environmental impacts. J. Marine Syst. 7, 293-320. https://doi.org/10.1016/0924-7963(95)00030-5
  • 93. Tait, R.V., 1988. Elements of Marine Ecology, 3rd Edn. University Press, Cambridge, 356 pp.
  • 94. Tamigneaux, E., Legendre, L., Klein, B., Mingelbier, M., 1999. Seasonal dynamics and potential fate of size-fractionated phytoplankton in a temperate nearshore environment (western Gulf of St Lawrence, Canada). Estuar. Coast. Shelf Sci. 48 (2), 253-269. https://doi.org/10.1006/ecss.1999.0416
  • 95. Tilstone, G.H., Figueiras, F.G., Fermin, E.G., Arbones, B., 1999. Significance of nanophytoplankton photosynthesis and primary production in a coastal upwelling system (Ria de Vigo, NW Spain). Mar. Ecol. Progr. Ser. 183, 13-27.
  • 96. Tilstone, G.H., Lange, P.K., Misra, A., Brewin, R.J.W., Cain, T., 2017. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean. Prog. Oceanogr. 158, 109-129. https://doi.org/10.1016/j.pocean.2017.01.006
  • 97. Tomas, C.R., 1996. Identification marine diatoms and dinoflagellates. Acad. Press, San Diego, 598 pp.
  • 98. Turkmen, P., 2016. Seasonal Changes of Pigment Composition along South-Eastern Coasts (Artvin-Giresun) of the Black Sea Master Thesis. Recep Tayyip Erdogan University.
  • 99. Uitz, J., Claustre, H., Gentili, B., Stramski, D., 2010. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cy. 24. https://doi.org/10.1029/2009GB003680
  • 100. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton. Methodik Mitteilung Internationale Vereinigung Theoretische und Angewandte Limnologie 9, 1-8.
  • 101. Uysal, Z., Kideys, A.E., Senichkina, L., Georgieva, L., Altukhov, D., Kuzmenko, L., Manjos, L., Mutlu, E., Eker, E., 1998. Phytoplankton patches formed along the southern Black Sea coast in spring and summer 1996. In: Ivanov, L., Oguz, T. (Eds.), Ecosystem modelling as a management tool for the Black Sea. Vol. 1, Kluwer Acad. Publ., Dordrecht, 151-162.
  • 102. Uysal, Z., Sur, H.I., 1995. Net phytoplankton discriminating patches along the Southern Black Sea Coast in winter 1990. Oceanolog. Acta 18 (6), 639-647.
  • 103. Vedernikov, V.I., Demidov, A.B., 1993. Primary production and chlorophyll in the deep regions of the Black Sea. Oceanology 33, 229-235.
  • 104. Vedernikov, V.I., Demidov, A.B., 1997. Vertical distribution of primary production and chlorophyll during different seasons in deep regions of the Black Sea. Oceanology 37, 376-384.
  • 105. Veldhuis, M.J.W., Timmermans, K.R., Croot, P., van der Wagt, B., 2005. Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J. Sea Res. 53(1—2), 7-24. https://doi.org/10.1016/j.seares.2004.01.006
  • 106. Vinogradov, M., Shushkina, E., Mikaelyan, A., Nezlin, N.P., 1999. Temporal (seasonal and interannual) changes of ecosystem of the open waters of the Black Sea. In: Be ̧siktepe, S.T., Ünlüata, Ü., Bologa, A.S. (Eds.), Environmental Degradation of the Black Sea: Challenges and Remedies. Kluwer Acad. Publ., Dordrecht, 109-129.
  • 107. Viviani, D.A., Björkman, K.M., Karl, D.M., Church, M.J., 2011. Plankton metabolism in surface waters of the tropical and subtropical Pacific Ocean. Aquat. Microb. Ecol. 62 (1), 1-12. https://doi.org/10.3354/ame01451
  • 108. Yayla, M., Yilmaz, A., Morkoc, E., 2001. The Dynamics of nutrient enrichment and primary production related to recent changes in the ecosystem of the Black Sea. Aquat. Ecosyst. Health and Manage. 4, 33-49. https://doi.org/10.1080/146349801753569261
  • 109. Yilmaz, A., Coban-Yildiz, Y., Tugrul, S., 2006. Biogeochemical cycling and multilayer production in the Black Sea. Geophys. Res. Abst. 8, 00541.
  • 110. Yilmaz, A., Tugrul, S., Polat, C., Ediger, D., Coban, Y., Morkoc, E., 1998. On the production, elemental composition (C, N, P) and distribution of photosynthetic organic matter in the Southern Black Sea. Hydrobiologia 363, 141-156. https://doi.org/10.1023/A:1003150512182
  • 111. Yunev, O., Vladimir, A., Basturk, O., Yilmaz, A., Kideys, A.E., Moncheva, S., Konovalov, S.K., 2002. Long-term variation of surface chlorophyll-a and primary production in the open Black Sea. Mar. Ecol. Progr. Ser. 230, 11-28. https://doi.org/10.3354/meps230011
  • 112. Zaitsev, Yu.P., Alexandrov, B.G., 1997. Recent man-made changes in the Black Sea Ecosystem. In: Ozsoy, E., Mikaelyan, A. (Eds.), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Acad. Publ., Dordrecht, the Netherlands, 25-31.
  • 113. Zatsepin, A.G., Ginzburg, A.I., Kostianoy, A.G., Kremenetskiy, V.V., Krivosheya, V.G., Stanichny, S.V., Poulain, P-M., 2003. Observations of Black Sea mesoscale eddies and associated horizontal mixing. J. Geophys. Res. 108 (C8). https://doi.org/10.1029/2002JC001390
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c423086-6c1b-4c1b-aa4d-4ecd0399609e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.