PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction between sphalerite and pyrite and its effect on surface oxidation of sphalerite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction between sphalerite and pyrite was investigated by dissolution test, X-ray photoelectron spectroscopy (XPS), zeta potential measurement and density functional theory (DFT) calculation. Dissolution tests indicated that sphalerite dissolution was promoted due to the galvanic interaction between sphalerite and pyrite. The Zn2+ ion concentration increased with increasing pyrite content and dissolved time. XPS analysis results demonstrated that a new oxidation product was formed on the sphalerite surface in the presence of pyrite in a pulp. Zeta potential measurements showed that the isoelectric point of sphalerite increased from 3.3 to 5.4 due to galvanic interaction. DFT calculation results suggested that electron transfer from sphalerite to pyrite occurred when they contacted. The Zn 4s and S 3p states of sphalerite lost electrons. The Fe 4p and 4s of pyrite states obtained electrons, and Fe 3d and S 3s states lost a small number of electrons. The surface oxidation of sphalerite was promoted due to the interaction with pyrite, and the collectorless floatability of sphalerite decreased.
Słowa kluczowe
Rocznik
Strony
311--320
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
Bibliografia
  • CHANDRA, A.P., GERSON, A.R., 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid. Interfac., 145, 97-110.
  • CHEN, X., SEAMAN, D., PENG, Y., BRADSHAW, D., 2014. Importance of oxidation during regrinding of rougher flotation concentrates with a high content of sulfides. Miner. Eng., 66, 165-172.
  • CRUZ, R., LUNA-Sanchez, R.M., LAPIDUS, G.T., GONZALEZ, I., MONROY, M., 2005. An experimental strategy to determine galvanic interactions affecting the reactivity of sulfide mineral concentrates. Hydrometallurgy, 78, 198-208.
  • EJTEMAEI, M., NGUYEN, A.V., 2017. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Miner. Eng., 109, 14-20.
  • EJTEMAEI, M., PLACKOWSKI, C., Nguyen, A.V., 2016. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite. Miner. Eng., 89, 42-51.
  • EKMEKÇI, Z., DEMIREL, H., 1997. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. Int. J. Miner. Process., 52, 31-48.
  • ESTRADA-DE Los Santos, F., RIVERA-SANTILLAN, R.E., TALAVERA-ORTEGA, M., BAUTISTA, F., 2016. Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite. Hydrometallurgy, 163, 167-175.
  • FENG, Q., Wen, S., DENG, J., ZHAO, W., 2017. DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface. Appl. Surf. Sci., 396, 920-925.
  • FINCH, J.A., RAO, S.R., 1988. Galvanic interaction studies on sulphide minerals. Can. Metall. Quart., 27, 253-259.
  • FORNASIERO, D., LI, F., RALSTON, J., SMART, R.S.C., 1994. Oxidation of Galena Surfaces: I. X-Ray Photoelectron Spectroscopic and Dissolution Kinetics Studies. J. Colloid. Interf. Sci., 164, 333-344.
  • GAO, Y., GAO, Z., SUN W., HU, Y., 2016. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process., 154, 10-15.
  • GAO, Z., LI, C., SUN, W., HU, Y., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids Surf. A, 520, 53-61.
  • GAO, Z., SUN, W., HU, Y., 2014. Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration. Trans. Nonferrous Met. Soc. China, 24(9), 2930-2937.
  • GERSON, A.R., LANGE, A.G., PRINCE, K.E., SMART, R.S., 1999. The mechanism of copper activation of sphalerite. Appl. Surf. Sci., 137, 207-223.
  • HARMER, S.L., MIERCZYNSKA-VASILEV, A., BEATTIE, D.A., SHAPTER, J.G., 2008. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite. Miner. Eng., 21, 1005-1012.
  • HU, Y., GAO, Z., SUN, W., LIU X., 2012. Anisotropic surface energies and adsorption behaviors of scheelite crystal. Colloids Surf. A, 415(1), 439-448.
  • NOOSHABADI, J.A, RAO, H. K., 2014. Formation of hydrogen peroxide by galena and its influence on flotation. Adv. Powder Technol., 25, 832-839.
  • JIAO, F., WU, J., QIN, W., WANG, X., LIU, R., 2016. Interactions of tert dodecyl mercaptan with sphalerite and effects on its flotation behavior. Colloids Surf. A, 506, 104-113.
  • KE, B., LI, Y., CHEN, J., ZHAO, C., CHEN, Y., 2016. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces. Appl. Surf. Sci., 367, 270-276.
  • LEIRO, J.A., TORHOLA, M., LAAJALEHTO, K., 2017. The AFM method in studies of muscovite mica and galena surfaces. J. Phys. Chem. Solids., 100, 40-44.
  • LIU, J., WEN, S., CHEN, X., BAI, S., LIU, D., 2013. DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface. Miner. Eng., 46, 1-5.
  • LONG, X., CHEN, J., CHEN, Y., 2016. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study. Appl. Surf. Sci., 370, 11-18.
  • MARTIN, C.J., RAO, S.R., FINCH, J.A., LEROUX, M., 1989. Complex sulphide ore processing with pyrite flotation by nitrogen. Inter. J. Miner. Process., 26, 95-110.
  • MIKHLIN, Y., KARACHAROV, A., TOMASHEVICH, Y., SHCHUKAREV, A., 2016. Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement. Vacuum, 125, 98-105.
  • MIKHLIN, Y., VOROBYEV, S., ROMANCHENKO, A., 2016. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids. Chemosphere, 147, 60-66.
  • MU, Y., LI, L., PENG, Y., 2017. Surface properties of fractured and polished pyrite in relation to flotation. Miner. Eng., 101, 10-19.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Miner. Eng., 96, 143-156.
  • OWUSU, C., BRITO e Abreu, S., SKINNER, W., ADDAI-MENSAH, J., ZANIN, M., 2014. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner. Eng., 55, 87-95.
  • OWUSU, C., FORNASIERO, D., ADDAI-MENSAH, J., ZANIN, M., 2015. Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures. Inte. J. Miner.Process., 134, 50-57.
  • QIN, W., WANG, X., MA, L., JIAO, F., 2015. Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite. Miner. Eng., 74, 99-104.
  • LIU, Q.Y., LI, H.P., LI, Z., 2007. The Study on the Galvanic Effect of Sulphide Minerals: A Review. Bulletin of Mineralogy Petrology and Geochemistry, 26, 284-289 (in Chinese).
  • SANTOS, F.E., RIVERA-SANTILLAN, R.E., TALAVERA-ORTEGA, M., BAUTISTA, F., 2016. Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite. Hydrometallurgy, 163, 167-175.
  • SONG, S.X., LOPEZ-VALDIVIESO, A., REYES-BAHENA, J.L., BERMEJO-PEREZ, H.I., 2001. Hydrophobic flocculation of sphalerite fines in aqueous suspensions induced by ethyl and amyl xanthates. Colloids Surf. A, 181, 159-169.
  • TRAHAR, W.J., SENIOR, G.D., SHANNON, L.K., 1994. Interactions between sulphide minerals — the collectorless flotation of pyrite. Inter. J. Miner. Process., 40, 287-321.
  • URBANO, G., MELENDEZ, A.M., REYES, V.E., VELOZ, M.A., GONZALEZ, I., 2007. Galvanic interactions between galena-sphalerite and their reactivity. Inter. J. Miner. Process., 82, 148-155.
  • WANG J., GAO, Z., GAO, Y., HU, Y., SUN, W., 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner. Eng., 98, 261-263.
  • RAO, M.K., NATARAJAN, K.A., 1989. Electrochemical effects of mineral-mineral interactions on the flotation of chalcopyrite and sphalerite. Inter. J. Miner. Process., 27, 279-293.
  • ZHANG, Q., XU, Z., BOZKURT, V., FINCH, J.A., 1997. Pyrite flotation in the presence of metal ions and sphalerite. Inter. J. Miner. Process., 52, 187-201.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c39a375-039a-4ff9-9860-5e459b6324fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.