PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial distribution of seismic cycle progression in northeast India and Bangladesh regions inferred from natural time analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ability to determine the current state of seismic cycle of large sized earthquakes is of profound importance in societal policymaking and disaster preparation. In this article, we present a probabilistic formulation of event-based natural time counts to develop earthquake potential score (EPS) at 36 cities from northeast India, Bangladesh, and adjoining areas. The time-dependent natural time analysis provides an attractive regional seismic hazard evaluation method, because it (1) exhibits spatiotemporal and clustering invariability, ensuring model consistency, (2) considers "seismic cycles" for a network of faults in a defined area, and (3) enables some physical interpretations aligned with earthquake generation process characterized by stress accumulation and moment release. The modeling results for M≥6 events reveal that EPS values lie between 41 and 94%, with the scores of Agartala (91%), Aizawl (84%), Dimapur (80%), Guwahati (41%), Imphal (90%), Malda (70%), Shillong (52%), Siliguri (73%), Barisal (59%), Chittagong (94%), Comilla (88%), Dhaka (78%), Mymensingh (81%), Narayanganj (77%), Rangpur (55%), and Sylhet (60%). These values essentially serve as a yardstick to statistically assess the current state of regional seismic cycle progression in the study region, bringing out some key information to the decision-makers, engineers, scientists, and citizens to improve earthquake preparedness and mitigation strategies.
Czasopismo
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani 333031, India
  • Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani 333031, India
  • Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani 333031, India
  • Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
  • Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani 333031, India
Bibliografia
  • 1. Baruah S, Baruah S, Kayal JR (2013) State of tectonic stress in northeast India and adjoining south Asia region: an appraisal. Bull Seism Soc Am 103:194–210. https://doi.org/10.1785/0120110354
  • 2. Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc Lond, Spec Publ 483:423–482. https://doi.org/10.1144/SP483.16
  • 3. BIS I (2002) Indian standard criteria for earthquake resistant design of structures. Bureau of Indian Standards, New Delhi
  • 4. Boyd OS (2012) Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses. Bull Seism Soc Am 102:909–917. https://doi.org/10.1785/0120110008
  • 5. Ciesin C (2005) Gridded population of the world version 3 (gpwv3): population density grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University
  • 6. Egolf DA (2000) Equilibrium regained: from no-equilibrium chaos to statistical mechanics. Science 287(5450):101–104
  • 7. Field EH, Biasi GP, Bird P, Dawson TE, Felzer KR, Jackson DD, Johnson KM, Jordan TH, Madden C, Michael AJ, Milner KR (2015) Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3). Bull Seism Soc Am 105:511–543. https://doi.org/10.1785/0120140093
  • 8. Fox GC, Rundle JB, Donnellan A, Feng B (2022) Earthquake nowcasting with deep learning. Geohazards 3:199–226
  • 9. Frankel AD, Petersen MD, Mueller CS, Haller KM, Wheeler RL, Leyendecker EV, Wesson RL, Harmsen SC, Cramer CH, Perkins DM, Rukstales KS (2002) Documentation for the 2002 update of the national seismic hazard maps. US Geol Surv Open-File Rep 420:39
  • 10. Hamling IJ, Hreinsdóttir S, Clark K, Elliott J, Liang C, Fielding E, Litchfield N, Villamor P, Wallace L, Wright TJ, D’Anastasio E (2017) Complex multifault rupture during the 2016 Mw7.8 Kaikoura earthquake. Sciences 356:154. https://doi.org/10.1126/science.aam7194
  • 11. Holliday JR, Graves WR, Rundle JB, Turcotte DL (2016) Computing earthquake probabilities on global scales. Pure Appl Geophys 173:739–748. https://doi.org/10.1007/s00024-014-0951-3
  • 12. Holliday JR, Rundle JB, Tiampo KF, Turcotte DL (2006) Using earthquake intensities to forecast earthquake occurrence times. Nonl Proces Geophys Eur Geosci Union (EGU) 13:585–593
  • 13. Iervolino I, Giorgio M, Chioccarelli E (2014) Closed-form aftershock reliability of damage-cumulating elastic-perfectly-plastic systems. Earthq eng struct dyn 4:613–625. https://doi.org/10.1002/eqe.2363
  • 14. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions. Wiley, New York
  • 15. Kayal JR, Arefiev SS, Baruah S, Tatevossian R, Gogoi N, Sanoujam M, Gautam JL, Hazarika D, Borah D (2010) The 2009 Bhutan and Assam felt earthquakes (Mw 6.3 and 5.1) at the Kopili fault in the Northeast Himalaya region. Geomat, Nat Hazards Risk 1:273–281. https://doi.org/10.1080/19475705.2010.486561
  • 16. Kuehn NM, Hainzl S, Scherbaum F (2008) Non-poissonian earthquake occurrence in coupled stress release models and its effect on seismic hazard. Geophys J Int 174:649–658. https://doi.org/10.1111/j.1365-246X.2008.03835.x
  • 17. Luginbuhl M, Rundle JB, Turcotte DL (2018) Natural time and nowcasting induced seismicity at the Groningen gas fields in the Netharlands. Geophys J Int 215:753–759. https://doi.org/10.1093/gji/ggy315
  • 18. Meade BJ, Klinger Y, Hetland EA (2013) Inference of multiple earthquake-cycle relaxation timescales from irregular geodetic sampling of interseismic deformation. Bull Seism Soc Am 103:2824–2835. https://doi.org/10.1785/0120130006
  • 19. Mukul M, Jade S, Bhattacharyya AK, Bhusan K (2010) Crustal shortening in convergent orogens: insights from global positioning system (GPS) measurements in northeast India. J Geol Soc India 75:302–312. https://doi.org/10.1007/s12594-010-0017-9
  • 20. Nandy DR (2001) Geodynamics of North Eastern India and the adjoining region. ACB Pub, Kolkata, p 209
  • 21. Pasari S (2015) Understanding Himalayan tectonics from geodetic and stochastic modeling. PhD Thesis, Dept. Civil Engg. IIT Kanpur, India. 376
  • 22. Pasari S (2019a) Inverse gaussian versus lognormal distribution in earthquake forecasting: keys and clues. J Seismolog 23:537–559
  • 23. Pasari S (2019b) Nowcasting earthquakes in the Bay-of-Bengal region. Pure Appl Geophys 176:1417–1432
  • 24. Pasari S (2019c) Nowcasting earthquakes in the Bay-of-Bengal region. Pure Appl Geophys 23:537–559
  • 25. Pasari S (2020) Stochastic modeling of earthquake interevent counts (natural times) in Northwest Himalaya and adjoining regions. In: Bhattacharyya S, Kumar J, Ghoshal K (eds) Mathematical modeling and computational tools. Springer Proceedings in Mathematics & Statistics. 320:495–501
  • 26. Pasari S (2022) Estimation of current earthquake hazard through nowcasting method. In: Srinivas R, Kumar R, Dutta M (eds) Advances in computational modeling and simulation, pp 55–60
  • 27. Pasari S, Sharma Y, Neha (2021a) Quantifying the current state of earthquake hazards in Nepal. Appl Comp Geosci 10:100058
  • 28. Pasari S, Simanjuntak AVH, Mehta A, Neha, Sharma Y (2021b) A synoptic view of the natural time distribution and contemporary earthquake hazards in Sumatra Indonesia. Nat Hazards 108:309–321
  • 29. Pasari S, Simanjuntak AVH, Mehta A, Neha, Sharma Y (2021c) The current state of earthquake potential on Java Island Indonesia. Pure Appl Geophys 178:2789–2806
  • 30. Pasari S, Simanjuntak AVH, Neha, Sharma Y (2021d) Nowcasting earthquakes in Sulawesi Island Indonesia. Geosci Lett 8:1–13
  • 31. Pasari S, Dikshit O (2014a) Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure Appl Geophys 171:1251–1281
  • 32. Pasari S, Dikshit O (2014b) Three-parameter generalized exponential distribution in earthquake recurrence interval estimation. Nat Hazards 73:639–656
  • 33. Pasari S, Dikshit O (2015a) Distribution of earthquake interevent times in northeast India and adjoining regions. Pure Appl Geophys 172:2533–2544
  • 34. Pasari S, Dikshit O (2015b) Earthquake interevent time distribution in Kachchh, Northwestern India. Earth Planets Space 67:129
  • 35. Pasari S, Dikshit O (2018) Stochastic earthquake interevent time modeling from exponentiated Weibull distributions. Nat Hazards 90:823–842
  • 36. Pasari S, Neha (2022) Nowcasting based earthquake hazard estimation at major cities in New Zealand. Pure Appl Geophys 179:1597–1612
  • 37. Pasari S, Sharma Y (2020) Contemporary earthquake hazards in the West-Northwest Himalaya: a statistical perspective through natural times. Seismol Res Lett 91:3358–3369
  • 38. Perez-Oregon J, Angulo-Brown F, Sarlis NV (2020) Nowcasting avalanches as earthquakes and the predictability of strong avalanches in the Olami-Feder-Christensen model. Entropy 22(11):1228
  • 39. Perez-Oregon J, Varotsos PK, Skordas ES, Sarlis NV (2021) Estimating the epicenter of a future strong earthquake in Southern California, Mexico, and Central America by means of natural time analysis and earthquake nowcasting. Entropy 23(12):1658
  • 40. Rundle JB, Donnellan A (2020) Nowcasting earthquakes in southern California with machine learning: bursts, swarms and aftershocks may reveal the regional tectonic stress. Earth Space Sci. https://doi.org/10.1002/essoar.10501945.1
  • 41. Rundle JB, Donnellan A, Fox G, Crutchfield JP (2021a) Nowcasting earthquakes by visualizing the earthquake cycle with machine learning: a comparison of two methods. Surv Geophys 43:483–501
  • 42. Rundle JB, Donnellan A, Fox G, Crutchfield JP, Granat R (2021b) Nowcasting earthquakes: imaging the earthquake cycle in California with machine learning. Earth Space Sci 8(12):e2021EA001757
  • 43. Rundle JB, Giguere A, Turcotte DL, Crutchfield JP, Donnellan A (2019) Global seismic nowcasting with Shannon information entropy. Earth Space Sci 6:456–472. https://doi.org/10.1029/2018EA000464
  • 44. Rundle JB, Holliday JR, Graves WR, Turcotte DL, Tiampo KF, Klein W (2012) Probabilities for large events in driven threshold systems. Phys Rev E 86:021106. https://doi.org/10.1103/PhysRevE.86.021106
  • 45. Rundle JB, Klein W, Gross S, Ferguson CD (1997) The traveling density wave model for earthquakes and driven threshold systems. Phys Rev E 56:293–307. https://doi.org/10.1103/PhysRevE.56.293
  • 46. Rundle JB, Klein W, Gross S, Turcotte DL (1995) Boltzmann fluctuations in numerical simulations of nonequilibrium threshold systems. Phys Rev Lett 75:1658–1661. https://doi.org/10.1103/PhysRevLett.75.1658
  • 47. Rundle JB, Luginbuhl M, Giguere A, Turcotte DL (2018) Natural time, nowcasting and the physics of earthquakes: estimation of seismic risk to global megacities. Pure Appl Geophys 175:647–660. https://doi.org/10.1007/978-3-319-92297-3_10
  • 48. Rundle JB, Luginbuhl M, Khapikova P, Turcotte DL, Donnellan A, McKim G (2020) Nowcasting great global earthquake and tsunami sources. Pure Appl Geophys 177:359–368. https://doi.org/10.1007/s00024-018-2039-y
  • 49. Rundle JB, Stein S, Donnellan A, Turcotte DL, Klein W, Saylor C (2021c) Reports on progress in physics the complex dynamics of earthquake fault systems: new approaches to forecasting and nowcasting of earthquakes. Rep Prog Phys 84(7):076801
  • 50. Rundle JB, Turcotte DL, Donnellan A, Grant-Ludwig L, Luginbuhl M, Gong G (2016) Nowcasting earthquakes. Earth Space Sci 3:480–486. https://doi.org/10.1002/2016EA000185
  • 51. Salditch L, Stein S, Neely J, Spencer BD, Brooks EM, Agnon A, Liu M (2020) Earthquake supercycles and long-term fault memory. Tectonophy 774:228289. https://doi.org/10.1016/j.tecto.2019.228289
  • 52. Scholz CH (2019) The mechanics of earthquakes and faulting. Cambridge University, Cambridge
  • 53. Sharma Y, Pasari S, Ching KE, Dikshit O, Kato T, Malik JN, Chang CP, Yen JY (2020) Spatial distribution of earthquake potential along the Himalayan arc. Tectonophys 791:228556. https://doi.org/10.1016/j.tecto.2020.228556
  • 54. Shcherbakov R, Turcotte DL, Rundle JB (2005) Aftershock statistics. Pure Appl Geophys 162:1051–1076. https://doi.org/10.1007/s00024-004-2661-8
  • 55. Tiampo KF, Rundle JB, Klein W, Martins JS, Ferguson CD (2007) Ergodicity in natural fault systems. Phy Rev E 75:0666107. https://doi.org/10.1007/978-3-0348-7873-9_10
  • 56. Toro G, Silva WJ (2001) Scenario Earthquakes for Saint Louis, MO, and Memphis, TN, and Seismic Hazard Maps for the Central United States Region Including the Effect of Site Conditions. Final Report, USGS External Grant Number 1434-HQ-97-GR-02981
  • 57. Varotsos PK, Perez-Oregon J, Skordas ES, Sarlis NV (2021) Estimating the epicenter of an impending strong earthquake by combining the seismicity order parameter variability analysis with earthquake networks and nowcasting: application in the Eastern Mediterranean. Appl Sci 11(21):10093
  • 58. Varotsos PA, Sarlis NV, Skordas ES (2001) Spatio-temporal complexity aspects on the interrelation between seismic electric signals and seismicity. Pract Athens Acad 76:294–321
  • 59. Varotsos PA, Sarlis NV, Skordas ES (2002a) Long-range correlations in the electric signals that precede rupture. Phys Rev E 66:011902
  • 60. Varotsos PA, Sarlis NV, Skordas ES (2002b) Seismic electric signals and seismicity: on a tentative interrelation between their spectral content. Acta Geophys 50:338–354
  • 61. Varotsos PA, Sarlis NV, Skordas ES (2011) Natural time analysis: the new view of time. Springer, Berlin. https://doi.org/10.1007/978-3-642-16449-1
  • 62. Varotsos PA, Sarlis NV, Tanaka HK, Skordas ES (2005) Some properties of the entropy in natural time. Phys Rev E 71:032102. https://doi.org/10.1103/PhysRevE.71.032102
  • 63. Wiemer S (2000) Introducing probabilistic aftershock hazard mapping. Geophys Res Lett 27:3405–3408. https://doi.org/10.1029/2000GL011479
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c34624f-13a1-4ab8-8dfb-40225c675d20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.