PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change

Identyfikatory
ISBN
10.1016/j.oceano.2023.08.001
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study included the analysis of changes in sea surface and water column temperature and air temperature in the years 1959–2019 in the southern Baltic Sea based on in situ measurement (CTD probe), satellite data, and model data (ERA5). SST increased on average by 0.6°C per decade. Analyses at different depths showed that the highest temperature increase per decade at 0.60–0.65°C characterised the layers from 0 to 20 m. The smallest increase (0.11°C) was recorded at a depth of 70 m, below which the temperature change per decade increases again to 0.24°C. The results from satellite observations covering 1982–2019 were consistent with measurement data. The most intense water warming occured in the spring – summer (0.8–1°C per decade); in the winter, the change did not exceed 0.2°C. In the offshore area, in 1951–2020, air temperature increased by approx. 2°C, with an average increase of 0.37°C per decade. The average increase in seawater temperature in the coastal zone was 0.2°C per decade. The most intense warming characterised March to May (0.25–0.27°C). The average annual air temperature increase on the coast from 1951 to 2020 was 0.34°C per decade. The results represent an important contribution to research and prediction of changes in the marine environment caused by global climate change.
Czasopismo
Rocznik
Strony
37--55
Opis fizyczny
Bibliogr. 49 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Kraków, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
  • Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
Bibliografia
  • 1. BACC II, 2015. Second assessment of climate change for the Baltic Sea basin. Regional climate studies. Springer, Berlin.
  • 2. BALTEX, 2006. Assessment of climate change for the Baltic Sea basin - The BACC project. Summary, The BACC Lead Author Group (eds.), Int. BALTEX Secr. Publ. No 35, 26 pp.
  • 3. Belkin, I.M., 2009a. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207-213. Belkin, I.M., Cornillon, P.C., Sherman, K., 2009b. Fronts in large marine ecosystems. Prog. Oceanogr. 81 (1-4), 223-236.
  • 4. Bradtke, K., Herman, A., Urbanski, J.A., 2010. Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea. Oceanologia 52 (3), 345-362. https://doi.org/10.5697/oc.52-3.345
  • 5. Brierley, A.S., Kingsford, M.J., 2009. Impacts of climate change on marine organisms and ecosystems. Current Biol. 19 (14), R602-R614.
  • 6. Bychkova, V.E., Dujsekina, A.E., Fantuzzi, A., Ptitsyn, O.B., Rossi, G.L., 1998. Release of retinol and denaturation of its plasma carrier, retinol-binding protein. Fold. Des. 3 (4), 285-291.
  • 7. Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. Proc. Nat. Acad. Sci. USA 111, 5628-5633.
  • 8. Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 210, 223-253.
  • 9. Dailidien˙e, I., Baudler, H., Chubarenko, B., Navrotskaya, S., 2011. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. Oceanologia 53 (1-TI), 293-308. https://doi.org/10.5697/oc.53-1-TI.293
  • 10. Dettinger, M., Anderson, J., Anderson, M., Brown, L.R., Cayan, D., Maurer, E., 2016. Climate change and the Delta. San Francisco Estuary and Watershed. Science 14 (3). https://doi.org/10.15447/sfews.2016v14iss3art5
  • 11. Diaz, R.J., Rosenberg, R., 2011. Introduction to environmental and economic consequences of hypoxia. Int. J. Water Res. Develop. 27 (1), 71-82.
  • 12. Dokulil, M.T., Jagsch, A., George, G.D., Anneville, O., Jankowski, T., Wahl, B., Teubner, K., 2006. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol. Oceanogr. 51 (6), 2787-2793.
  • 13. Dutheil, C., Meler, H.E.M., Gröger, M., Börgel1, F., 2022. Understanding past and future sea surface temperature trends in the Baltic Sea. Clim. Dynam. 58, 3021-3039. https://doi.org/10.1007/s00382-021-06084-1
  • 14. Eiola, K., Stigebrandt, A., 1998. Spreading of juvenile fresh-water in the Baltic proper. J. Geophys. Res. 103 (C12), 27795-27807. Fischer, H., Matthäus, W., 1996. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Marine Syst. 9, 137-157.
  • 15. Gröger, M., Arneborg, L., Dieterich, C., 2019. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean-sea ice-atmosphere model. Clim. Dynam. 53, 5945-5966. https://doi.org/10.1007/s00382-019-04908-9
  • 16. Hinrichsen, H.H., Lehmann, A., Petereit, C., Schmidt, J., 2007. Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production. Oceanologia 49 (3), 381-395.
  • 17. Høyer, J.L., She, J., 2007. Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. J. Mar. Syst. 65, 1-4.
  • 18. Høyer, J.L., Karagali, I., 2016. Sea surface temperature climate data record for the North Sea and Baltic Sea. J. Clim. 29, 2529-2541. https://doi.org/10.1175/JCLI-D-15-0663.1
  • 19. Iles, C., Hegerl, G., 2017. Role of the North Atlantic Oscillation in decadal temperature trends. Environ. Res. Lett. 12, 114010. https://doi.org/10.1088/1748-9326/aa9152
  • 20. IPCC, 2022. Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA (in press). https://doi.org/10.1017/9781009157896
  • 21. Jørgensen, S.E., 1994. Models as instruments for combination of ecological theory and environmental practice. Ecol. Model. 75, 5-20.
  • 22. Jørgensen, S.E., Xu, F., Salas, F., Marques, J.C., 2005. Application of indicators for the assessment of ecosystem health. In: Jørgensen, S., Xu, L., Costanza, R. (Eds.), Handbook of ecological indicators for assessment of ecosystem health, 5-65.
  • 23. King, J.C., Marshall, G.J., Colwell, S., Arndt, S., Allen-Sader, C., 2022. The Performance of the ERA-Interim and ERA5 Atmospheric Reanalyses Over Weddell Sea Pack Ice. JGR Oceans 127 (9). https://doi.org/10.1029/2022JC018805
  • 24. Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B.W., Hajdu, S., Olli, K., 2013. Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnol. Oceanogr. 58 (2), 753-762.
  • 25. Kniebusch, M., Meier, H.E.M., Neumann, T., Börgel, F., 2019. Temperature variability of the Baltic Sea since 1850 and attribution to atmospheric forcing variables. J. Geophys. Res.-Oceans 124, 4168-4187.
  • 26. Kullenberg, G., 1981. Physical oceanography in the Baltic Sea, A. Voipia (ed.), Elsevier, Amsterdam, 135-181. Kr˛e˙zel, A., Ostrowski, M., Szymelfenig, M., 2005. Sea surface temperature distribution during upwelling along the Polish Baltic coast. Oceanologia 47 (4), 415-432.
  • 27. Laakso, L., Mikkonen, S., Drebs, A., Karjalainen, A., Pirinen, P., Alenius, P., 2018. 100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea. Ocean Sci. 14 (4), 617-632. https://doi.org/10.5194/os-14-617-2018
  • 28. Levin, L.A., 2018. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev Mar. Sci. 10, 229-260.
  • 29. Liblik, T., Lips, U., 2019. Stratification has strengthened in the Baltic Sea-an analysis of 35 years of observational data. Front. Earth Sci. 7, 174. https://doi.org/10.3389/feart.2019.00174
  • 30. MacKenzie, B.R., Schiedek, D., 2007. Long-term sea surface temperature baselines-time series, spatial covariation and implications for biological processes. J. Mar. Syst. 68, 405-420.
  • 31. Makkonen, U., Saarnio, K., Ruoho-Airola, T., Hakola, H., 2015. Methods for determination of phosphate and total phosphorus in precipitation and particulate matter, no. 2. Report Ser., Finnish Meteorol. Inst., Helsinki, Finland.
  • 32. Matciak, M., Urbański, J., Piekarek-Jankowska, H., Szymelfenig, M., 2001. Presumable groundwater seepage influence on the upwelling events along the Hel Peninsula. Oceanol. Stud. 30 (3-4), 125-132.
  • 33. Meier, H.E.M., Saraiva, S., 2020. Projected oceanographical changes in the Baltic Sea until 2100. [in:]. Oxford Res. Encyclopedia, Climate Sci. Oxford Univ. Press.
  • 34. Meier, H.E.M., Kauker, F., 2003. Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res. 10, 3368.
  • 35. Meier, H.E.M., Müller-Karulis, B., Andersson, H.C., Eilola, K., Gustafsson, B.G., Höglund, A., Hordoir, R., 2012a. Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: A multi-model ensemble study. AM-BIO 41, 558-573.
  • 36. Meier, H.E.M., Almroth-Rosell, E., 2011. Climate-related changes in marine ecosystems with a 3-dimensional coupled physical-biogeochemical model of the Baltic Sea. Clim. Res. 48 (1), 31-55. https://doi.org/10.3354/cr00968
  • 37. Meier, H.E.M., Eilola, B.G., Gustafsson, I., Kuznetsov, T., Neumann, T., Savchuk, O.P., 2012b. Uncertainty assessment of projected ecological quality indicators in future climate. Rap. Oceanograf No. 112, SMHI, Norrköping, Sweden.
  • 38. Merchant, C.J., Embury, O., Bulgin, C.E., Block, T., Corlett, G.K., Fiedler, E., Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C., 2019. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 6, 223. https://doi.org/10.1038/s41597-019-0236-x
  • 39. Mohrholz, V., 2018. Major Baltic Inflow statistics - revised. Front. Mar. Sci. 5, 1-16. https://doi.org/10.3389/fmars.2018.00384
  • 40. Orio, A., Heimbrand, Y., Limburg, K., 2022. Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of aniconic keystone predator. Ambio 51, 626-637. https://doi.org/10.1007/s13280-021-01572-4
  • 41. Pärn, O., Lessin, G., Stips, A., 2021. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea. PloS one 16 (3), e0242637.
  • 42. Pollock, M.S., Clarke, L.M.J., Dubé, M.G., 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15 (NA), 1-14.
  • 43. Qiu, Y., Feng, J., Zhang, Z., Zhao, X., Li, Z., Ma, Z., Zhu, J., 2023. Regional aerosol forecasts based on deep learning and numerical weather prediction. npj Clim. Atmos. Sci. 6 (1), 71. https://doi.org/10.1038/s41612-023-00397-0
  • 44. Sinkko, H., Hepolehto, I., Lyra, C., Rinta-Kanto, J.M., Villnäs, A., Norkko, J., Norkko, A., Timonen, S., 2019. Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments. Sci. Rep. 9, 16341.
  • 45. Stramska, M., Białogrodzka, J., 2015. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982-2013) of satellite data. Oceanologia 57 (3), 223-235. https://doi.org/10.1016/J.OCEANO.2015.04.004
  • 46. Tronin, A., 2017. The satellite-measured sea surface temperaturę change in the Gulf of Finland. Int. J. Remote Sens. 38 (6), 1541-1550.
  • 47. Virtanen, E.A., Norkko, A., Nyström Sandman, A., Viitasalo, M., 2019. Identifying areas prone to coastal hypoxia-the role of topography. Biogeosciences 16, 3183-3195.
  • 48. Visbeck, M., Hurrell, J.W., Polvani, L., Cullen, H.M., 2001. The North Atlantic Oscillation: past, present, and future. Proc. Natl. Acad. Sci. USA 98 (23), 12876-12877.
  • 49. Walton, C.C., Pichel, W.G., Sapper, J.F., May, D.A., 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res.-Oceans 103 (C12), 27999-28012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c30d6c4-ea5f-450b-9487-ad0f089dacfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.