PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of selected parameters on the electrical strength of a high-voltage vacuum insulation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of laboratory measurements of 𝑈𝑑 breakdown voltages in a high-voltage vacuum insulating system for different pressures, contact gaps, type of electrode contacts and type of residual gas inside the discharge chamber. First of all, the electrical strength of the discharge chamber with a contact system terminated with contact pads made of W70Cu30 and Cu75Cr25 material was compared for selected values of contact gaps. It was found that below a pressure of 𝑝 = 3.0×10-1 Pa the electrical strength reaches an approximately constant value for each of the set contact gaps 𝑑. Analytical relationships were determined to calculate this value for each of the contact pads used. Above a pressure of 𝑝 = 3.0×10-1 Pa, the measured values of 𝑈d breakdown voltages decrease sharply. The values of breakdown voltages in the discharge chamber with residual gases in the form of air, argon, neon and helium were also determined for selected values of contact gaps 𝑑. Depending on the residual gases used, significant differences were noted in the values of pressure 𝑝 at which the loss of insulating properties in the discharge chamber occurred. These values were 3.3 × 10-1 Pa for argon, 4.1 × 10-1 Pa for air, 6.4 × 10-1 Pa for neon, and 2.55 × 100 Pa for helium, respectively.
Rocznik
Strony
597--611
Opis fizyczny
Bibliogr. 30 poz., fot., rys, tab.
Twórcy
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology Nadbystrzycka 38A str., 20-618 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology Nadbystrzycka 38A str., 20-618 Lublin, Poland
Bibliografia
  • [1] Opydo W., Properties of Gas and Vacuum High Voltage Insulation Systems (in Polish), PoznanUniversity of Technology Publishing (2008).
  • [2] Szpor S., Dzierżek H., Winiarski W., High Voltage Technology (in Polish), WNT (1978).
  • [3] Flisowski Z., High Voltage Technology (in Polish), WNT (1999).
  • [4] Szpor S., Electrical strength and insulation technology (in Polish), PWN (1959).
  • [5] Hałas A., High Vacuum Technology (in Polish), PWN (1980).
  • [6] Van Atta L.C., Van De Graaf R.J., Barton H.A., A new design for a high – voltage discharge tube, Phys. Rev., vol. 43, p. 158 (1933), DOI: 10.1103/PhysRev.43.158.
  • [7] Wijker W.J., The electrical breakdown in vacuum, Appl. Sci. Res., vol. 9, p. 1 (1961).
  • [8] Cranberg L., The initiation of electrical breakdown in vacuum, J. Appl. Phys., vol. 23, p. 518 (1952), DOI: 10.1063/1.1702243.
  • [9] Tarasova L.V., Desorbcionnyj mehanizm èlektričeskogo proboâ v vakuume, Doklady AN SSSR, vol. 167, p. 330 (1966).
  • [10] Flowers P., Theopold K., Langley R., Neth E.J., Robinson W.R., Chemistry 2e by OpenStax, Hardcover (2019).
  • [11] Marić D., Malović G., Petrović Z.L., Space–time development of lowpressure gas breakdown, Plasma Sources Sci. Technol., vol. 18, no. 034009 (2009), DOI: 10.1088/0963-0252/18/3/034009.
  • [12] Fu Y., Yang S., Zou X., Luo H., Wang X., Effect of distribution of electric field on low-pressure gas breakdown, Physics of Plasmas, vol. 24, no. 023508 (2017), DOI: 10.1063/1.4976848.
  • [13] Pejovic M.M., Ristic G.S., Karamarkovic J.P., Electrical breakdown in low pressure gases, Journal of Physics D: Applied Physics, vol. 35, pp. 91–103 (2002), DOI: 10.1088/0022-3727/35/10/201.
  • [14] Lisovskiy V.A., Osmayev R., Gapon A., Dudin S., Lesnik I., Yegorenkov V., Electric field nonuniformity effect on dc low pressure gas breakdown between flat electrodes, Vacuum, vol. 145, pp. 19–29 (2017), DOI: 10.1016/j.vacuum.2017.08.022.
  • [15] Hou C. et al., W–Cu composites with submicron- and nanostructures: progress and challenges, NPG Asia Materials, vol. 11, no. 74 (2019), DOI: 10.1038/s41427-019-0179-x.
  • [16] Dong L.L., Ahangarkani M., Chen W.G., Zhang Y.S., Recent progress in development of tungstencopper composites: fabrication, modification and applications, Int. J. Refract. Met. Hard Mater., vol. 75, pp. 30–42 (2018), DOI: 10.1016/j.ijrmhm.2018.03.014.
  • [17] Fan J.L., Peng S.G., Liu T., Cheng H.C., Application and research status of W–Cu composite materials, Rare Met. Cem. Carbides, vol. 34, no. 3, pp. 30–35 (2006).
  • [18] Chen W., Dong L., Zhang Z. et al., Investigation and analysis of arc ablation on WCu electrical contact materials, J. Mater. Sci.: Mater. Electron., vol. 27, pp. 5584–5591 (2016), DOI: 10.1007/s10854-016-4463-z.
  • [19] Bukhanovsky V.V., Grechanyuk N.I., Minakova R.V. et al., Production technology, structure and properties of Cu–W layered composite condensed materials for electrical contacts, Int. J. Refract. Met. Hard Mater, vol. 29, no. 5, pp. 573−581 (2011), DOI: 10.1016/j.ijrmhm.2011.03.007.
  • [20] Jiang G.S., Wang Z.F., Yi G., Impact on the tungsten copper electronic packaging materials microstructure and properties of high-temperature forging, Powder Metall. Mater. Sci. Eng., vol. 16, no. 3, pp. 403–406 (2011).
  • [21] Wei X., Wang J., Yang Z., Sun Z., Yu D., Song X., Ding B., Yang S., Liquid phase separation of Cu–Cr alloys during the vacuum breakdown, Journal of Alloys and Compounds, vol. 509, pp. 7116–7120 (2011), DOI: 10.1016/j.jallcom.2011.04.017.
  • [22] Zhai X., Xiao W., Mudi K., Ruan X., Effect of Powder Form and SPS Process Sintering on CuCr50 Alloy Powder, Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shenyang, China, pp. 88–91 (2015), DOI: 10.2991/meic-15.2015.22.
  • [23] Wanga L., Zhang X., Wang Y., Yang Z., Jia S., Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc, Physics of Plasmas, vol. 25, no. 043511 (2018), DOI: 10.1063/1.5023213.
  • [24] Mostic D., Osmokrovic P., Stankovic K., Radosavljevi R., Dielectric characteristics of vacuum circuit breakers with CuCr and CuBi contacts before and after short-circuit breaking operations, Vacuum, vol. 86, no. 2, pp. 156–164 (2011), DOI: 10.1016/j.vacuum.2011.05.007.
  • [25] Osmokrovic P., Vujisic M., Stankovic K., Vasic A., Loncar B., Mechanism of electrical breakdown of gases for pressures from 10−9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm, Plasma Sources Sci. Technol., vol. 16, no. 643 (2007), DOI: 10.1088/0963-0252/16/3/025.
  • [26] Lech M., Węgierek P., Breakdown Initiation and Electrical Strength of a Vacuum Insulating System in the Environment of Selected Noble Gases at AC Voltage, Energies, vol. 15, no. 1154 (2022), DOI: 10.3390/en15031154.
  • [27] Power engineering, distribution and transmission, Polish Power Transmission and Distribution Association’s Report, Poznań (2021).
  • [28] Węgierek P., Lech M., Kostyła D., Kozak C., Study on the Effect of Helium on the Dielectric Strength of Medium-Voltage Vacuum Interrupters, Energies, vol. 14, no. 3742 (2021), DOI: 10.3390/en14133742.
  • [29] Slade P.G., The Vacuum Interrupter Theory, Design, and Application, CRC Press (2021).
  • [30] Regulation (EU) No. 517/2014 of the European Parliament and of the Council on fluorinated greenhouse gases of 16 April 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c2f6551-6d2a-408e-9d9c-091e352fa4db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.