PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indoor Environmental Quality Assessment Model IEQ Developed in ITB. Part 1. Choice of the Indoor Environmental Quality Sub-Component Models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model do obliczania wskaźnika Jakości Środowiska Wewnętrznego IEQ opracowany w ITB. Cz. 1. Dobór modeli procesów wpływających na IEQ
Języki publikacji
EN
Abstrakty
EN
Indoor environment quality is a relative measure of comfort perception by people exposed to the indoor conditions. It is expected that any assessment of energy performance should also include indoor comfort. This study is to review indoor environmental quality models (with respect to thermal and acoustic comfort, indoor air and lighting quality). A simplified indoor environmental quality model is also developed with consideration of PN-EN 15251. The proposed indoor environmental quality component sub-models will give the most reliable results when the model indoor environment input data are correctly measured and disturbing influences of indoor environmental quality monitoring process are well defined and properly assessed. The presented indoor environmental quality model proposal is developed to support engineers’ practice as the convenient tool for a practical assessment of building’s occupational satisfaction.
PL
Jakość środowiska wewnętrznego jest względną miarą postrzegania komfortu przez osoby eksponowane na działanie warunków otoczenia we wnętrzach. Oczekuje się, że każda ocena efektywności energetycznej powinna również obejmować komfort w pomieszczeniach. Celem tych analiz było dokonanie przeglądu modeli jakości środowiska wewnętrznego (pod względem komfortu cieplnego i akustycznego, jakości powietrza w pomieszczeniach i oświetlenia). Uproszczony model jakości środowiska wewnętrznego był opracowywany z uwzględnieniem normy PN-EN 15251. Proponowane sub-modele komponentów jakości środowiska wewnętrznego dają najbardziej wiarygodne wyniki, gdy dane wejściowe modeli tego środowiska są prawidłowo mierzone i wpływy zakłócające monitoring jakości środowiska w pomieszczeniach są dobrze zdefiniowane i adekwatnie ocenione. Przedstawiona propozycja złożonego modelu jakości środowiska wnętrza została opracowana jako narzędzie praktyki inżynierskiej do oceny satysfakcji z warunków środowiskowych w budynku jaką będą wyrażać jego użytkownicy.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 38 poz., ta., wykr.
Twórcy
autor
  • Department of Thermal Physics, Acoustics and Environments, Building Research Institute, Warsaw, Poland
  • Department of Thermal Physics, Acoustics and Environments, Building Research Institute, Warsaw, Poland
Bibliografia
  • [1] Bluyssen P.M., C. Roda, C. Mandin, S. Fossati, P. Carrer, de Y. Kluizenaar. 2016. Self-reported health and comfort in `modern` office buildings: first results from the European OFFICAIR Study. Indoor Air. 2016; 26:298-312.
  • [2] Azuma K., K. Ikeda, N. Kagi, U. Yanagi, H. Osawa. 2015. Prevalence and risk factor associated with nonspecific building related symptoms in office employees in Japan: relationship between work environment, Indooor Air Quality and occupational stress. Indoor Air. 2015; 25:499-511.
  • [3] Ncube M. 2012. The development of a methodology for a tool for rapid assessment of indoor environment quality in office buildings in the UK. Doctor Thesis, University of Nottingham.
  • [4] ASHRAE 2011 Guideline 10 - Interactions Affecting the Achievement of Acceptable Indoor Environments. Atlanta, GA: ASHRAE.
  • [5] Heinzerling D., S. Schiavon, T. Webster. 2013. Indoor environmental quality assessment models: a literature review and a proposed weighting and classification scheme. Building and Environment (70) 210-222.
  • [6] Viollon S, C. Lavandier, C. Drake. 2002. Influence of visual setting on sound ratings in an urban environment. Applied Acoustics 63: 493-511.
  • [7] DELTA Report. 2007. The ‘Genlyd’ Noise Annoyance Model Dose- Response Relationships Modeled by Logistic Functions. Hoersholm: Danish Electronics, Light & Acoustics.
  • [8] Wesson D.W., D. A. Wilson. 2010. Smelling sounds: olfactory-auditory sensory convergence in the olfactory tubercle. The Journal of Neuroscience (30) 3013-3021.
  • [9] PN-EN 16309+A1:2014-12 Zrównoważoność obiektów budowlanych - Ocena socjalnych właściwości użytkowych budynków - Metodyka obliczania.
  • [10] prEN15251draft_5. 2014. Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings. Brussells: CEN.
  • [11] Alfano A., B.I. Palella, G. Riccio. 2011. The role of measurement accuracy on the thermal environment assessment by means of PMV index. Building and Environment (46) 1361-1369.
  • [12] Ye G., Yang C., Y. Chen. 2003. A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET*). Building and Environment (38) 33-44.
  • [13] Cao B., Ouyang Q, Zhu Y. 2012. Development of a multivariate regression model foroverall satisfaction in public buildings based on field studies in Beijing and Shanghai. Building and Environment (473) 94-99.
  • [14] Zhang Y., R. Zhao. 2008. Overall thermal sensation, acceptability and comfort. Building and Environment (43) 44-50.
  • [15] European Concerted Action (ECA). 1992. Indoor Air Quality and Its Impact on Man, Report no. 1, Luxembourg: European Communities.
  • [16] Gunnarsen L., P.O. Fanger. 1992. Adaptation to indoor pollution. Entertainment International (18) 43-54.
  • [17] Yeganeh B, F. Haghihat, L.B. Gunnarsen. 2006. Evaluation of building materials individually and in combination using odour threshold. Indoor and Built Environment 15(6): 583-593.
  • [18] Wargocki P, H. N. Knudsen. J. Krzyżanowska. 2010. Some methodological aspects of sensory testing of indoor air quality. In: Proceedings of CLIMA, Antalya, Turkey, 9-12.
  • [19] Kostyrko K., P. Wargocki . 2012. Monografia: Measurements of Odours and Perceived Air Quality In Rooms. Warszawa: Wydawnictwo ITB.
  • [20] Bekierski D., H. Deptula, S. Wall. 2013. Comparison of formaldehyde concentration level with results of physical tests. Prace Instytutu Techniki Budowlanej 168: 3-14 (in Polish).
  • [21] Wong L.T., K.W. Mui, P.S. Hui. 2008. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment (43) 1-6.
  • [22] Fang L., G. Clausen, P.O. Fanger. 1998. Impact of temperature and humidity on the perception of indoor air quality. Indoor Air (8) 80-90.
  • [23] Chu C.M., T.L. Jong. 2008. Enthalpy estimation for thermal comfort and energy saving in air conditioning system. Energy Conversion and Management (491) 620-628.
  • [24] Tuomaala P., K. Piira. 2000. A new application for predicting thermal comfort. Proceedings of Healthy Buildings (SIY Indoor Air Information OY) (2) 605-610.
  • 25] Toftum J, A. Joergensen and P.O. Fanger. 1998. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings (28) 15-23.
  • [26] Simonson CJ. 2000. Moisture, Thermal and Ventilation Performance of Tapanila Ecological House. Espoo: VTT Technical Research Centre of Finland.
  • [27] Alayrac M, S. Villon, C. Marquis-Favre. 2008. Noise annoyance indicators for various industrial noise sources: results and discussion. The Journal of the Acoustical Society of America 123(5). dostępne: http://dx.doi.org/10.1121/1.2935533.
  • [28] EU’s Future Noise Policy. 2002. Position Paper on Dose Response Relationships between Transportation Noise and Annoyance. Luxembourg: European Communities.
  • [29] Raport WHO. 2009b. Night Noise Guidelines for Europe. Copenhagen: WHO Regional Office for Europe.
  • [30] Piasecki M, K. Kostyrko, S. Pykacz. 2017. Indoor environmental quality assessment, part 1: choice of the indoor environmental quality sub-component models. Journal of Building Physics 41: (3): 294-289.
  • [31] Xue P, C.M. Mak, H.D. Cheung. 2014. The effects of day lighting and human behavior on luminous comfort in residential buildings: a questionnaire, survey. Building and Environment (81) 51-59.
  • [32] Hunt DRG. 1980. Predicting artificial lighting use: a method based upon observed patterns of behavior. Lighting Research & Technology 12(1): 7-14.
  • [33] Haldi F. 2010. Monografia: Towards a unified model of occupants’ behaviour and comfort for building energy simulation. Docteur These, Ѐcole Polytechnique Fédérale De Lausanne, Lausanne.
  • [34] Kim H., J. Haberl. 2012. Field-test of the new ASHRAE/CIBSE/ USGBC Performance Measurement Protocols for commercial buildings: basic level. ASHRAE Transactions 118: 135-142.
  • 35] Piasecki M, K. B. Kostyrko. 2018. Indoor environmental quality assessment, part 2: Model reliability analysis, Journal Building Physics, vol. 5, DOI: 10.1177/1744259118754391.
  • [36] European Environment Agency (EEA). 2010. Good Practice Guide on Noise Exposure and Potential Health Effect, EEA technical report 11/Luxembourg: Office for Official Publications of the European Union, 2010.
  • [37] Wargocki P., H.N. Knudsen, A. Rabstajn. 2009. Measurement of perceived air quality: correlation between odour intensity, acceptability and characteristics of air. In: Healthy Buildings 2009: Proceedings of the 9th International Healthy Buildings Paper 103.
  • [38] Raport WHO. 2009a. Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c2cfa07-6c04-4471-a0a3-45c9c10e33d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.