PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogical and geochemical studies of secondary mineral assemblages related to deterioration of building materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study was aimed at mineralogical and geochemical characteristics of secondary phases related to deterioration of historic building materials. The investigations, carried out in the Holy Trinity Basilica in Kraków, Poland, focused on the southern facade of the 17th-century Myszkowskis Chapel, built of the Miocene Pińczów limestone. Lower part of the facade is covered with a cement render, and the exposed foundations are made of Jurassic limestone and Cretaceous sandstone, both of local origin from the Kraków region and neighbouring Carpathians, in the form of irregular blocks bound with a cement mortar. The wall surface exhibits clear signs of damage; from dark grey soiling and scaling to efflorescences. Sampled materials, deteriorated, altered crusts and efflorescences were analysed with optical and scanning electron microscopy, X-ray diffraction, and Raman microspectroscopy methods. The secondary minerals distinguished include abundant gypsum CaSO42H2O, less common thenardite Na2SO4 (and/or mirabilite Na2SO410H2O), aphthitalite (K, Na)3Na(SO4)2, darapskite Na3(SO4)(NO3)H2O, ettringite Ca6Al2(SO4)3(OH)12 26H2O, monosulphite Ca4Al2O6SO311H2O, as well as scarce nitre KNO3, nitratine NaNO3 and halite NaCl. Gypsum usually forms surface crusts and fills the pores inside some materials. The efflorescences, sampled from the exposed foundations, consisted of thenardite and/or mirabilite, aphthitalite and darapskite, whereas ettringite and monosulphite were connected with cement renders. Traces of nitre, nitratine and halite were detected at various elements of the chapel facade and foundations. The origin of the salts is related to composition and physicochemical properties of the building materials, as well as to anthropogenic factors.
Rocznik
Strony
683--698
Opis fizyczny
Bibliogr. 62 poz., fot., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Adamski, G., Bratasz, L., Kozłowski, R., Mayr, N., Mucha, D., Stilhammerova, M., Weber, J., 2009. Roman cement - key historic material to cover the exteriors of buildings. In: RILEM Workshop Repair Mortars for Historic Masonry (ed. C. Groot): 2-11. RILEM Publications SARL.
  • 2. Benavente, D., 2011. Why pore size is important in the deterioration of porous stones used in the built heritage. Macla, 15: 41-42.
  • 3. Bieniarzówna, J., Małecki, J.M., 1984. Dzieje Krakowa, tom 2, Kraków w wiekach XVI-XVIII (in Polish). Wydawnictwo Literackie, Kraków.
  • 4. Boggs, S., Jr., 2010. Petrology of Sedimentary Rocks. Cambridge University Press, Cambridge.
  • 5. Bromowicz, J., Górniak, K., Przystaś, G., Rembiś, M., 2001. Results of petrographic analyses of typical reservoir lithofacies of the Carpathian Flysch (in Polish with English abstract). Polish Journal of Mineral Resources, 4: 31-75.
  • 6. Buzgar, N., Buzatu, A., Sanislav, I.V., 2009. The Raman study on certain sulfates. Analele Ştiinţifice ale Universităţii “Al.I. Cuza” din laşi, seria Geologie, 55: 5-23.
  • 7. Cardell, C., Delalieux, F., Roumpopoulos, K., Moropoulou, A., Auger, F., Van Grieken, R., 2003. Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Construction and Building Materials, 17: 165-179.
  • 8. De Belie, N., 2010. Microorganisms versus stony materials: a love-hate relationship. Materials and Structures, 43: 1191-1202.
  • 9. De Clercq, H., Jovanović, M., Linnow, K., Steiger, M., 2013. Performance of limestones laden with mixed salt solutions of Na2SO4-NaNO3 and Na2SO4-K2SO4. Environmental Earth Science, 69: 1751-1761.
  • 10. Del Monte, M., Ausset, P., Lefèvre, R.A., Thiébault, S., 2001. Evidence of pre-industrial air pollution from the Heads of the Kings of Juda statues from Notre Dame Cathedral in Paris. Science of the Total Environment, 273: 101-109.
  • 11. Dobrowolski, T., 1978. Sztuka Krakowa (in Polish). Wydawnictwo Literackie, Kraków.
  • 12. Doehme, E., Price, C. A., 2010. Stone Conservations: An Overview of Current Research. Getty Conservation Institute, Los Angeles.
  • 13. Domasłowski, W., 1993.Profilaktyczna konserwacja kamiennych obiektów zabytkowych (in Polish). Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
  • 14. Flatt, R.J., Steiger, M., Scherer, G.W., 2007. A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environmental Geology, 52: 187-203.
  • 15. Gosselin, C., Girardet, F., Feldman, S.B., 2012a. Compatibility of Roman cement mortars with gypsum stones and anhydrite mortars: the example of Valère Castle (Sion, Switzerland). 12th International Conference on the Deterioration and Conservation of Stone: 1-11. Columbia University, New York.
  • 16. Gosselin, C., Scrivener, K.L., Feldman, S.B., 2012b. Hydration of roman cements used for architectural restoration. International Conference on Cement Chemistry, Madrid 2011: 1-13.
  • 17. Grabski, W., Nowak, J., 1957. Problem niszczenia się kamienia w budowlach zabytkowych Krakowa (in Polish). Materiały budowlane, 1: 33-39.
  • 18. Grabski, W., Nowak, J., 1960. Studia technologiczne i mineralogiczne nad wapieniem pińczowskim (Objawy i przyczyny zniszczeń kamienia przy kopule kaplicy Myszkowskich kościoła OO. Dominikanów w Krakowie) (in Polish), manuscript, 26 pp. Archive of Kraków City Office, Department of Conservation of Monuments, No inv. 3126/77.
  • 19. Gradziński, R., 1972. Przewodnik geologiczny po okolicach Karkowa (in Polish). Wyd. Geol., Warszawa.
  • 20. Górecki, J., Sermet, E., 2010. Quarries of Kraków - an underestimated heritage (in Polish). In: Mining History - an Element of the European Cultural Heritage (eds. P.P. Zagożdżon and M. Madziarz), 3: 123-138. Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 21. Grossi, C.M., Brimblecombe, P., Menéndez, B., Benavente, D., Harris, I., Déqué, M., 2011. Climatology of salt transitions and implications for stone weathering. Science of the Total Environment, 409: 2577-2585.
  • 22. Hamilton, A., Menzies, R., 2010. Raman spectra of mirabilite, Na2SO4 10H2O and the rediscovered metastable heptahydrate, Na2SO4 7H2O. Journal of Raman Spectroscopy, 41: 1014-1020.
  • 23. Hansteen, E.T., Burke, E., 1994. Aphthitalite in hight-temperature fluid inclusions in quartz from Eikeren-Skrim granite complex the Oslo paleorift. Norsk Geologisk Tidsskrift, 74: 238-240.
  • 24. Holtkamp, M., Heijnen, W., 1991. The mineral darapskite in the efflorescence on two Dutch Churches. Studies in Conservation, 36: 175-178.
  • 25. Jentzsch, P.V., Ciobota, V., Kampe, B., Rösch P., Popp J., 2012. Origin of salt mixtures and mixed salts in atmospheric particulate matter. Journal of Raman Spectroscopy, 43: 514-519.
  • 26. Kozłowski, R., Hughes, D., Weber, J., 2010. Roman cements: key materials of the built heritage of the 19th century. In: Materials, Technologies and Practice in Historic Heritage Structures (eds. M. Bostenaru Dan, R. Přikryl and A. Török): 259-277. Springer Science+Business Media B.V.
  • 27. Kozłowski, R., Magiera, J., Weber, J., Haber, J., 1990. Decay and conservation of Pinczów porous limestone. I. Lithology and weathering. Studies in Conservation, 35: 205-221.
  • 28. Kramar, S., Urosevič, M., Pristacz, H., Mirtič, B., 2010. Assessment of limestone deterioration due to salt formation by micro-Raman spectroscopy: application to architectural heritage. Journal of Raman Spectroscopy, 41: 1441-1448.
  • 29. Labus, M., 1998. Water soluble salt in degradation processes of stony architectural monuments in the Upper Silesia. Geological Quarterly 42 (2): 209-220.
  • 30. Lindström, N., Heitmann, N., Linnow, K., Steiger, M., 2015. Crystallization behavior of NaNO3-Na2SO4 salt mixtures in sandstone and comparison to single salt behavior. Applied Geochemistry, 63: 116-132.
  • 31. Linnow, K., Steiger, M., Lemster, Ch., De Clercq, H., Jovanović, M., 2013. In situ Raman observation of the crystallization in NaNO3-Na2SO4-H2O solution droplets. Environmental Earth Science, 69: 1609-1620.
  • 32. Łagosz, A., Małolepszy, J., 2003. Tricalcium aluminate hydration in the presence of calcium sulfite hemihydrates. Cement and Concrete Research, 33: 333-339.
  • 33. Manecki, A., Marszalek, M., Schejbal-Chwastek, M., Skowroński, A., 1997. Stone decay in some historic buildings of Kraków (Poland) and its reasons. Folia Facultatis Scientiarum Universitatis Masarykianae Brunensis, Geologia 39:149-156.
  • 34. Marszałek, M., 2016. Identification of secondary salts and their sources in deteriorated stone monuments using micro-Raman spectroscopy, SEM-EDS and XRD. Journal of Raman Spectroscopy, 47: 1473-1485.
  • 35. Marszałek, M., Alexandrowicz, Z., Rzepa, G., 2014. Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment. Environmental Science and Pollutution Research, 21: 1423-1436.
  • 36. Matuszko, D., Piotrowicz, K., Kowanetz, L., 2015. Components of the natural environment - climate (in Polish with English summary). In: Natural Environment of Krakow. Resources - Protection - Management (eds. M. Baścik and B. Degórska): 81-108. Uniwersytet Jagielloński w Krakowie, Kraków.
  • 37. Morillas, H., Marcaida, I., Maguregui, M., Carrero, J.A., Madariaga, J.M., 2016. The influence of rainwater composition on the conservation state of cementitious building materials. Science of the Total Environment, 542: 716-727.
  • 38. Pintér, F., Gosselin, C., 2018. The origin, composition and early age hydration mechanisms of Austrian natural Portland cement. Cement and Concrete Research, 110: 1-12.
  • 39. Pintér, F., Vidovszky, I., Weber, J., Bayer, K., 2014. Mineralogical and microstructural characteristics of historic Roman cement renders from Budapest, Hungary. Journal of Cultural Heritage, 15: 219-226.
  • 40. Prieto-Taboada, N., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, Á.M., Madariaga, J.M., 2014. Raman spectra of the different phases in the CaSO4-H2O system. Analytical Chemistry, 86: 10131-10137.
  • 41. Prieto-Taboada, N., Fdez-Ortiz de Vallejuelo, S., Veneranda Fdez-Ortiz de Vallejuelo, S., Veneranda, M., Madariaga, J.M., 2019. The Raman spectra of the Na2SO4 -K2SO4 system: applicability to soluble salts studies in built heritage. Journal of Raman Spectroscopy, 50: 175-183.
  • 42. Přikryl, R., Přikrylová, J., Racek, M., Weishauptová, Z., Kreislova, K., 2017. Decay mechanism of indoor porous opuka stone: a case study from the main altar located in the St. Vitus Cathedral, Prague (Czech Republic). Environmental Earth Science, 76: 1-15.
  • 43. Puşcaş, C.M., Onac, B.P., Tămas, T., 2010. The mineral assemblage of caves within Şălitrari Mountain (Cerna Valley, SW Romania): depositional environment and speleogenetic implications. Carbonates Evaporites, 25: 107-115.
  • 44. Rajchel, J., 2004. Kamienny Kraków (in Polish). Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
  • 45. Raporty o stanie środowiska w województwie małopolskim (in Polish). Wojewódzki Inspektorat Ochrony Środowiska w Krakowie, Kraków. http//www.krakow.pios.gov.pl Accessed December 2018.
  • 46. Rembiś, M., Smoleńska, A., 2010. Resistance of selected Carpathian sandstones to salt crystallization and the changes of their microstructures. Mineral Resources Management, 26: 37-59.
  • 47. Rodriguez-Navarro, C., Doehme, E., 1999. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and Landforms, 24: 191-209.
  • 48. Rożek M., 2009. Urbs celeberrima. Przewodnik po zabytkach Krakowa (in Polish). WAM, Kraków.
  • 49. Sabbioni, C., 2003. Mechanisms of air pollution damage of stone. In: The Effects of Air Pollution on the Built Environment (ed. P. Brimblecombe): 63-106. Air Pollution Reviews, 2nd vol. Imperial College Press, London.
  • 50. Sadezky, A., Muckenhumber, H., Grothe, H., Niessner, R., Pöschl, U., 2005. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 43: 1731-1742.
  • 51. Silcock, H.L., 1979. Solubilities of inorganic and organic compounds. Ternary and Multicomponent Systems of Inorganic Substances, 3. Pergamon Press, Oxford.
  • 52. Słaby, E., Galbarczyk-Gąsiorowska, L., Trzciński, J., Górka, H., Łukaszewski, P., Dobrowolska, A., 2000. The mechanism of sandstone deterioration caused by salt crystallisation (in Polish with English abstract). Przegląd Geologiczny, 49:124-133.
  • 53. Snethlage, R., Sterflinger, K., 2011. Stone conservation. In: Stone in Architecture (eds. S. Siegesmund and R. Snethlage): 411-544. Springer-Verlag, Berlin, Heidelberg.
  • 54. Steiger, M., Asmussen, S., 2008. Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress. Geochimica et Cosmochimica Acta, 72: 4291-4306.
  • 55. Studencki, W., 1988. Facies and sedimentary environment of the Pinczow Limestones (Middle Miocene; Holy Cross Mountains, Central Poland). Facies, 18: 1-26.
  • 56. Suh, J., Sung Yumb, W., Jeong, Y., Park H.G., Eun Oh, J., 2019. The cation-dependent effects of formate salt additives on the strength and microstructure of CaO-activated fly ash binders. Construction and Building Materials, 194: 92-101.
  • 57. Szeląg, H., Garbacik, A., Pichniarczyk, P., Baran, T., 2008. Cement romański i jego właściwości. (in Polish). Surowce i Maszyny Budowlane, 1: 74-78.
  • 58. Szeląg, H., Garbacik, A., Pichniarczyk, P., Baran, T., 2009. Contemporary Roman cement and its properties (in Polish with English abstract). Budownictwo, Czasopismo techniczne, Wydawnictwo Politechniki Krakowskiej, 109: 2-B, 337-345.
  • 59. Ślączka, A., Kamiński, M.A., 1998. A guide book to excursions in the Polish flysch Carpathians. Grzybowski Foundation Special Publication, 6.
  • 60. Török, A., Licha, T., Simon, K., Siegesmund, S., 2011. Urban and rural limestone weathering; the contribution of dust to black crust formation. Environmental Earth Science, 63: 675-693.
  • 61. Weber, J., Gadermayr, N., Kozłowski, R., Mucha, D., Hughes, D., Jaglin, D., Schwarz, W., 2007. Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Materials Characterisation, 58: 1217-1228.
  • 62. Wilczyńska-Michalik, W., 2004. Influences of atmospheric pollution on the weathering of stones in Kraków monuments and rock outcrops in Kraków, Kraków-Częstochowa Upland and the Carpathians. Akademia Pedagogiczna w Krakowie, Prace Monograficzne, 377.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c2973fa-cf52-4fb6-bd59-ce1f0274330e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.