PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On knowledge discovery and representations of molecular structures using topological indices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of a topological index is to encode a chemical structure by a number. A topological index is a graph invariant, which decribes the topology of the graph and remains constant under a graph automorphism. Topological indices play a wide role in the study of QSAR (quantitative structure-activity relationship) and QSPR (quantitative structure-property relationship). Topological indices are implemented to judge the bioactivity of chemical compounds. In this article, we compute the ABC (atom-bond connectivity); ABC4 (fourth version of ABC), GA(geometric arithmetic) and GA5(fifth version of GA) indices of some networks sheet. These networks include: octonano window sheet; equilateral triangular tetra sheet; rectangular sheet; and rectangular tetra sheet networks.
Rocznik
Strony
21--32
Opis fizyczny
Biblioigr. 24 poz., rys.
Twórcy
  • Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah21589, Saudi Arabia
  • Centre of Advanced Studies in Pure and applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
  • Centre of Advanced Studies in Pure and applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
  • Centre of Advanced Studies in Pure and applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
  • School of Mathematics, Southeast University, Nanjing 210096, China
  • Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah21589, Saudi Arabia
  • Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
  • School of Mathematical Science, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
Bibliografia
  • 1] S. Alikhani1, R. Hasni, N. E. Arif, On the Atom-Bond Connectivity Index of Some Families of Dendrimers, J. Comput. Theor. Nanosci. 11(2014), 1 – 4.
  • [2] M. Bac̆a, J. Horva′thova′, M. Mokris̆ova′, A. Suha′nyiovă, On topological indices of fullerenes, Appl. Math. Comput. 251(2015), 154 – 161.
  • [3] A. Q. Baig, M. Imran, H. Ali, Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes, Optoelectron. Adv. Mater. Rapid Communin. 9(2015), 248 – 255.
  • [4] A. Q. Baig, M. Imran, H. Ali, On Topological Indices of Poly Oxide, Poly Silicate, DOX and DSL Networks, Canad. J. Chem. Accepted, in press.
  • [5] M. Deza, P. W. Fowler, A. Rassat, K. M. Rogers, Fullerenes as tiling of surfaces, J. Chem. Inf. Comput. Sci. 40(2000), P550 – 558.
  • [6] M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova, Huntington, 2001.
  • [7] E. Estrada, L. Torres, L. Rodrez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A(1998), 849 – 855.
  • [8] W. Gao, W. Wang, M. R. Farahani, Topological indices study of molecular structure in anticancer drugs, J. Chem. vol. 2016, Article ID 3216327, 8 pages, 2016.
  • [9] M. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun. 4(2010), 1419 – 1422.
  • 10] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric-arithmetic index for nanostar dendrimers, J. Math. Nanosci. 1(2011), 33 – 42.
  • [11] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer-Verlag, New York, 1986.
  • [12] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes, J. Comput. Theor. Nanosci. 12(2015), 70 – 76.
  • [13] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes covered by C5 and C7, J. Comput. Theor. Nanosci., 12(2015), 533 – 541.
  • [14] S. Hayat, M. Imran, On some degree based topological indices of certain nanotubes, J. Comput. Theor. Nanosci. Accepted, in press.
  • [15] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240(2014), 213 – 228.
  • [16] A. Iranmanesh, M. Zeraatkar, Computing GA index for some nanotubes, Optoelectron. Adv. Mater. Rapid Commun. 4(2010), 1852 – 1855.
  • [17] W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer search for trees with minimal ABC index based on tree degree sequences, MATCH Commun. Math. Comput. Chem. 72(2014), 699 – 708.
  • [18] P. D. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An efficient representation of Benes networks and its applications, J. Discrete Algorithms, 6(2008), 11 – 19.
  • [19] S. Manzoor, M. K. Siddiqui, S. Ahmad, On entropy measures of molecular graphs using topological indices, Arab. J. Chem. 13(2020), 6285 - 6298.
  • [20] M. Nadeem, A. Yousaf, H. Alolaiyan, A. Razaq, Certain polynomials and related topological indices for the series of benzenoid graphs, Sci Rep.9,9129 (2019). https://doi.org/10.1038/s41598-019-45721-y.
  • [21] J. L. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72(2014), 709 – 713.
  • [22] M. Randic′, On Characterization of molecular branching, J. Amer. Chem. Soc., 97(1975), 6609 – 6615.
  • [23] D. Vukic̆evic′ B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46(2009), 1369 – 1376.
  • [24] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1947), 17 – 20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c240caf-a865-4d6e-9e52-02308d07ee3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.