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Abstract

The main purpose of a topological index is to encode a chemical structure by a num-
ber. A topological index is a graph invariant, which decribes the topology of the graph
and remains constant under a graph automorphism. Topological indices play a wide role
in the study of QSAR (quantitative structure-activity relationship) and QSPR (quantita-
tive structure-property relationship). Topological indices are implemented to judge the
bioactivity of chemical compounds. In this article, we compute the ABC (atom-bond con-
nectivity); ABCy4 (fourth version of ABC), GA(geometric arithmetic) and GAs(fifth version
of GA) indices of some networks sheet. These networks include: octonano window sheet;
equilateral triangular tetra sheet; rectangular sheet; and rectangular tetra sheet networks.

Keywords: graph network, sheet, topological index, cheminformatics, knowledge dis-

covery

1 Introduction and preliminary re-
sults

In chemical graph theory, an interesting sub-
field called Cheminformatics deals with a chem-
ical phenomenon known as quantitative structure-
activity/ structure- property relationships of chem-

ical compounds. The methods of cheminformatics
are also used for prediction of properties relevant to
the drug discovery and optimization process. For
example.knowledge discoverycan be used for the
identification of lead compounds in pharmaceuti-
cal data matching. An emerging tool, used in the
study of these phenomena, is a topological index
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which remains constant for all chemical structures
up to their symmetries. The study of the topologi-
cal indices on chemical structure drugs can provide
a theoretical basis for the manufacturing of drugs
and chemical materials. As a consequence, lack
of chemical experiments is made up. A number of
topological indices are determined in view of edge
dividing methods which provide remedy to the lack
of medicine experiments. In other words, compu-
tation of topological indices provides a theoretical
basis for pharmaceutical engineering. Correlation
of many physico-chemical properties like boiling
point; stability; and strain energy of these chemi-
cal compounds in a chemical structure is explained
by their topological indices [2, 7, 17, 19, 20).

In this era of rapid technological development,
chemical and pharmaceutical techniques in recent
years have been rapidly evolved, and thus a large
number of new nanomaterials, crystalline materi-
als, and drugs emerge every year. To determine the
chemical properties of such a large number of new
compounds and new drugs requires a large amount
of chemical experiments, thereby greatly increasing
the workload of the chemical and pharmaceutical
researchers. Fortunately, the chemical based exper-
iments found that there was strong connection be-
tween topology molecular structures and their phys-
ical behaviors, chemical characteristics, and biolog-
ical features, such as melting point, boiling point,
and toxicity of drugs (see Wiener [24] as examples).

The description of a graph can be a number; a
polynomial; a sequence of numbers; or a matrix.
A numerical quantity related to a graph that rep-
resents the topology of the graph is a topological
index. There are several main types of topologi-
cal indices such as distance based topological in-
dices and degree based topological indice. Among
these indices, a degree-based topological index is
very important and plays a vital role in chemical
graph theory. More precisely, a topological index
Top(G) of a graph G is a number that remains the
for every graph H such thatH = G. In other words,
we have Top(H) — Top(G) = 0. In [24], Wiener in-
troduced the first topological index while working
on the boiling point of paraffin. He named this in-
dex the path number. After a period of time, the
path number was renamed Wiener index in [5] and
the theory of topological indices got attention from
many researchers.

In present work, by a graph G we always mean
anetwork with vertex set V(G) and edge set E(G).
We denote the degree of a vertex u of G by deg(u)
(degree of a vertex u of a graph is the number of
edges that are incident to the vertex u) and S, is the
sum of degrees of vertex v which is the in neigh-
bour of vertex u i.e., Sy = ¥,en, () deg(v), where
Ng(u) is the of vretices which are in the neighbours
of vertex u, i.e., Ng(u) =v € V(G)|uv € E(G).

The atom-bond connectivity (ABC) is the well-
known degree based topological index, which is in-
troduced by Estrada et al. [7] and defined as

Z deg(u)+deg(v) —2

ABC(G
WeE(G deg(u)deg(v)

ey

The geometric-arithmetic (GA) index is due to
Vukicevic’ et al. [23] and defined as

B 2\/deg(u)deg(v)
MO = L deglu) +deg)

2

Ghorbani ef al. [9] introduced the fourth version
of ABC index denoted by ABC4(G) and defined as
Su+8,—2
Z ﬁiv (3)

ABC4(G
uveE(G SuSy

Recently, the fifth version of GA index is pro-
posed by Graovac et al. [10] and defined as

2V5.S,
>

GAs(G) = Gorsy

“

uwveE(G)

The aforementioned topological invariants are
hugely studied in literature. Some of the work done
in this direction can be found in [1-24].

In present work, we study the ABC, ABCy,
GA, and GAj5 indices of certain networks sheets in-
cluding octo-nanowindows sheet; enhanced mesh
or rectangular sheets; HDN like networks namely
equilateral triangular tetra sheets; and rectangular
tetra sheets networks.

2 Octo - nanowindows network

sheet

In this Section, we are in the position to com-
pute ABC, ABC4, GA, and GAs indices of octo-
nanowindow sheet networks.
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2.1 Construction of octo - nanowindow
sheet

First we draw an octagon where the vertices
are the eight corners and an edge links these cor-
ners with a length of 2 units. We paste the p oc-
tagons row wise and g octagons column wise to
get a graph G which is known as octo-sheet. Con-
nect the degree 2 vertices of each octagon which
are at distance 4 units. Finally, introduce 4 new
corner vertices and connect them to the corner ver-
tices of the corner octagon with a new edge of unit
1. The graph obtained in this way is called octo-
nanowindow ONW (4p.4q) having 2(2pg+p+q+
2) vertices and 6pg +3p+3g+4 edges. The graph
of ONW (4p,4q) is shown in Figure 1.

Figure 1. The octo-nanowindo ONW (4p,4q)
network, where p =3 and ¢ = 5.

Table 1. Edge partition of ONW (4p,4q) which
depends on the degrees of the final vertices located
at unit distance from each edge.

(dy,d,) where uv € E(G) | Number of Edges
(2,3) 8
(3,3) 6pg+3p+3g—4

The following theorem gives the ABC and GA
indices of octo-nanowindow ONW (4p,4q).

Theorem 2.1 Suppose that G is the graph of octo-
nanowindow ONW (4p,4q). Then, ABC(G) =
4pg+2p+2q+ (42 — %), for p,q > 1. Proof.
By following the data given in Table 1, we have

ABC(G) = Yer 6 \/ 2, [ 4 (6pg+
3P + 361 4) / 3+3

get ABC(G) = 4pq—|—2p+2q+ (4v2— g).

Theorem 2.2 With the same notations, we have

2. After an easy calculation, we

GA(G) = 6pq+3p +3q+4(2L 1), for p,q >
1.  Proof. By using the information about

the edge partition given in Table 1, we have
GA(G) = Luer(c) 20544772555 ¥ 8+2%55

dutd,) —“ 243 313
(6pg+3p+3q— 4)
GA(G) =

6pq+3p+3q+4(45ﬁ —1).

Table 2. Edge partition of octo-nanowindow based
on vertices degree sum which are located at unit
distance from the final vertices of each edge.

(Sy,Sy) where uv € E(G) | Number of edges
(6,8) 8

(8,8) 4

(8,9) 8

(9,9) 6pg+3p+3g—16

In next two results, we shall calculate the ABCsand
GAj5 index for the graph G of octo-nanowindow.

Theorem 2.3 Let G be the graph of octo-
nanowindow. Then,

ABC4(G) = [3]pg+3p+34—
holds for p,q > 1.

Proof. The formula for ABCy4 index is

ABC4(G) = ZMVGE(G) \/@

By using the information given in Table 2, we get

28 | V14 | 2V30
9t Ty

ABC4(G) = 8 ﬁgigz + 4 8;552 +

8,/ %252 4 (6pg+3p+39—16) /25252,

ABC4(G) = 8lpa+3p+3q— 3+ + 250,

Theorem 2.4 Suppose G is the graph of octo-
nanowindow. Then, GAs(G) = 6pq + 3p + 3q +
32f + 96‘[ — 12, holds for p,q > 1.

Proof. By using the information in the second col-

mun of Table 2, we have GAs(G) = ¥ck (G ZS%
2Wx8+2g§x4+2g§x8+2};§x
(6pg+3p+3q—16)
This implies
GAs(G) = 6pg +3p+3g+322 + %82 13,
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3 Equilateral triangular tetra

sheets network

This Section is devoted to the study of degree-
based topological descriptors of the equilateral tri-
angular tetra sheet.

We denote a graph of equilateral triangular tetra
sheet network with dimension n by ETTS(n). The
dimension n of ETTS(n) is represented by arrang-
ing n vertices on one side of the triangle structure.

3.1 Construction of the graph ETTS(n)

First we draw a triangle having n vertices on
each side. We connect a vertex from one side of the
triangle to the corresponding vertices of the other
two sides of the triangle by an edge. Introduce new
vertices in the intersecting edges. Replace all K3
with K4. (see Figure 3). The graph obtained in this
way is called equilateral triangular tetra sheet with
dimension n. The number of vertices and edges
in ETTS(n) are (3"2723 "12) and (9"2@5"%) respec-
tively.We note that the corner vertices of the graph
ETTS(n) with degree (3,3) are at equal distances
to all other vertices for each n, where n > 2. In the
following theorems, we compute the ABC and GA
indices for the graph of equilateral triangular tetra
sheet network.

Figure 2. The equilateral tetra sheet network
ETTS(5)

Table 3. Edge partition of ETTS(5) based on
degree of final vertices of each edge, where

uv € E(G)

(dy,dy) | Number of Edges
(3,3) 3

(3,7) on—12
(7,7) 3n—6
(3,12) | 3(n—3)(n—2)
(7,12) 6n— 18
(12,12) | 3(n—4)(n—3)

Theorem 3.1 Suppose that Gis a graph such
that G = ETTS(n). Then ABC(ETTS(n)) =

(2)[42 + P +nl§(VA2) +5(V3) - 3(VI3) +
BT -V 4R+ 3(VA) - B(VE) +
3V13 — 3(v357) +3(v22)], holds for n >

3. Proof. By using the information about
the edge partition given in Table 3, we have
ABC(G) =Yuer(o) | “3— =3/ 55"+ (9n—
12) /322 + (3n — 6)y/ B2 + 3(n — 3)(n —
2)y/2HE2 + (6n — 18)y/TEE2 x 12 + 3(n —

4)(1’1—3) 12+1272‘

12x12
ABC(G) = (n >[% YB] + n[§(V42)
+5(V3) = 3(VI3) + 5T — 3v22 +2 +

8(VA2) — 2(v3) +3vT3 - 3(v357) +3(v22)].

In the following theorem, we calculate the GA
index of ETTS(n)

Theorem 3.2 Assume that G is a graph of

ETTS(n). Then, the following holds for n >
3 GA(G) = n?[3] + n[2(V21) + #(V21) — ]

[147 12\/7+72\F]

Proof. By following the information given in Ta-

ble 3, we get GA(G) = Yuer(c 2%)—3><
2‘?1?3 +(%n — 12)X2‘é§ (3n—6)><2\§7+77
30 =3)(n = 2) X 2557 +(6n — 18) x 2457
+3(n—4)(n—3) x 29222,
GA(G) = n[%] +n[3(v21) + 35 (v21) = §]

+[147 2£ 72f]
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Table 4. Edge Partition of ETT'S(n) based on
vertices degree sum which are located at unit
distance from the final vertices of each edge.

(Su,Sy)whereuv € E(G) | Number of edges
(17,17) 3
(17,38) 12
(38,38) 3
(38,47) 6
(38,70) 6
(47,70) 6
(70,80) 6
(38,26) 12
(26,70) 9
(31,70) 6
(36,70) 3
(47,80) 6(n—>5)
(80,80) 3(n—35)
(47,47) 3(n—35)
(80,90) 6(n—06)
(90,90) 3(n27123n+42)
(47,26) 6(n—4)
(26,80) 3(n—35)
(47,31) 3(n—4)
(31,80) 6(n—>5)
(36,80) 9(n—S5)
(36,90) 3(n? — 11n+30)

In Theorem 3.3 and Theorem 3.4, we are in the
position to compute the ABC; and GAs indices of
a graph G, where G = ETTS(n). For this purpose,
the edge partition of G based on the degree sum of

final vertices of each edge is given in the following
Table.

Theorem 3.3 For n > 6, the ABCy index of a graph

G = ETTS(n) is ABC4(G)) = (325 + 23Lyn? +
15 3v79 23, 37 1389 71
(2\/5 + 40V/2 +6 2209 + 5V3 30v2 +6 1222 +

3 19 3/I09 . 9VI9 _ 11V3l
s T OVmm tovis tam T vie )t
12v/2 53 3V37 83 53
23 | 3V37 / 31 / 47 11
1B 75 3 _30,/23 187 | TV89 _
357 241 82 2200~ 53 52
fa 15 19 15V/109 _ 45V19
24/ 1om; 25 24\/ 1157 27155 430 +
/31
104/ 15-
Proof.  Since we know that, the formula for

computing ABC; index of the given graph is

+
+

_|_

+

+
+
+

+ o+ o+ o+ o+t

+ o+ o+ +

+

ABC4(G) = Luvek (o) S”S'fs"v_z. By inserting the
information given in Table 4, whave ABC4(G)
W+ 12y 3 e
6y S + 6y Sn0e + 6 o
6y Soms + 12555 + 9y e
6/257 2552 + 3¢/ 255155 + 6(n — 5), 455552
3(n = 5/ T 30— )/ TR
6(n — 6)y/ 525" + () 25
6(n — 4)y/ "5 + 30 — 5)\/H
3(n —4)y /252 4 6(n — 5), /252952 + 9(n
5)y/ 3558952 4 3(n? — 11n+30) , / 3622552
ABG(G) = 3\/Hmiyt + 124/ T
3/ 5 6 e + 6y e
6y e T 6 e + 12 5w
9/ F0e + 6y Bhe + 3y e
6(n — 3)\/Tm + 3 — 5/ 5w
3 = ) UEE + 60 — 6)y/ sy
(AUl SO 4 6(n — 4),/ 5255
3(n — 5), /2558052 1 3(n — 4), /4232 4 6(n
BB + o0 - 9),/%52 + 30
1n-+30), 5T asci(0) = 3 /T2
/B + 3BT 1 o)/
oS + o/ BB + o/ %
2,/ + 0/ + o/BE
35 + 6l — )y TRR + 3
R + 30— 9/ + 6l
6)/ S5 + (IR 52 6
VI + 30 - /%8 + 30
DI + 6l — 9,5 + o0
5y 582 30 - 110+30) 25
Further simplification gives us the following
form ABCy(G) = 45 + 2Bhyn? 4 (55
N+ 6B+ 2E - 2B 6/

+
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3v109 9v/19 1131
f+61457+2\/ﬁ+4f 3\ﬁ)n—k
12\f 3v37 53
(—5= + 12 +19f+6 1786+6 oo T

W 11
6 +5\ﬁ+12 +9 +18 5170 T

13 75 _3%73_30 23_18\f+7\/@_
35 z\ﬁ 3v2 2209 ~ 53 572
15v/109 4519

1222 2\[ =24/ 151~ Siss T +

07~ i T a0
10,/3}

Theorem 3.4 For n > 6, the GAs index of a
graph G of the equilateral triangular tetra sheet

ETTS(n) is GAs(G) = (9410 1 3)p2 4 (48235 _

227+72\f+12\/122 +12\/W+\/145 +481\{117_~_

24

108v/5 66f>n+ (24\/64 + 12\/178 \/266 +
29

4\/329 +8f+3\/24 _|_3\/45 +12\1/5117 _’_18\/7

240\/23 432\/ 48\/122 60130 4\/1457 .
127 53 13

240155

540f+180f+39)

111

Proof. Inserting the information about the edge

partitition from Table 4, in the following,As(G) =
Y ek (G) DVSS _ g o WITXIT 4 gy 2/ITX38 |

SutSy 17417 17138
2\/38><3 2/38x47 2/38x70
3X Tgas tOX T H6X Tgp H6X

2/ETXT0 2/70x80 2/38x26
0. T 0 X T T 12 X Sgag +9 X

2/26x70 2/31x70 2/36x70
Sor0- T 0 X g + 3 x S 4 6(n —

5) X 2y/47x80 + 3( 5) X 2/80x80 + 3( 5)

474-80 80180 X
IVETXET 2/80x90 —13n4+42
VATAT 4 6(n — 6) x 2S00 | Clnedd)
200 4 6(n — 4) x 2HTE 4 3(n - 5)
22080 1 3(n — 4) x BT 4 6(n — 5) x
251480 | g(y _ 5) 236580 43,214 30)
21/36x90
36+90

After simplification, we get GAs(G) = (—7 +

%)nz + (48% .

27 72v/2 1211222 12130
127 7+ 17 + 73 + 53 +

\/114;57 + 481\/11155 + 10;;;/5 . 66\7/E)n + (24\5/5646 +
12\/1786 V2660 | 4v/3290 | 814 | 3247 | 3/455
9 T3 t-5 tTi tTg T
12\/217 18W 240235 4322 481222
101 127 17 73
601/130 4\/145 _240V155 _ 540V/5 + 180110 +39)
53 111 29 7 :

4 Extended mesh or rectangular
network sheet

This Section is about the study of degree-based
topological descriptors for the extended mesh.

4.1 Construction of extended mesh net-
work

Assume that P, is a path with n vertices. Th
P, x P,, form,n > 2, represents the two dimen-
sional mesh, where m is the number of rows and
n is the number of columns. We denote this by
M (m,n). Note that M(m,n) is a graph with vertex
set V(M(m,n)) =v;;,1 <i<m,1< j<nandedge
set E(M(m,n)) = (vij,vi(j+1)) : 1 <i<m, 1 <j<
n—1Uvij, v 1<i<m—1,1<j<n.

By constructing all 4-cycle in a m x n mesh into
a complete subgraph, we get an architecture called
the extended mesh that is denoted by EX (m,n). The
number of vertices in EX (m,n) is mn and the num-
ber of edges in EX (m,n) is 4mn —3m —3n+2.

Figure 3. The rectangular sheet network (extended
mesh) EX(5,5)

Table 5. Edge partition of EX (m,n), based on
degree of end vertices of each edge, where

uv € E(G).
(dy,dy) Number of Edges
(3,5) 8
(3,8) 4
(5,8) (6m+6n—32)
(5,5) 2(m+n—4)
(8,8) | (4mn—11m—11n+30)
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Theorem 4.1 The ABC index of extended mesh
EX(m,n) is

ABC(EX (m,n)) = ( \ﬁmH 3\ﬁ+m_
llf 3\/74_7_% 8\/74—2\/»—

16\/ 16[4— 15\[ ), form,n > 5.

Proof. Let G be a graph of extended mesh
EX(m,n). The information given in Table 5 leads
us to the following calculation

ABC(G) = Luer(a) /24472 = 8,/ +

4,/2582 4 (6m + 6n — 32) 5§§82+2(m+n—

4) 5§i§2+(4mn711m711n+30) sxgz.

More simplification reduce the above exprs—
sion in to the following form ABC(EX (m,n)) =

\[mn+ 3\/>—|———“fm+ 3\/>+
w2 I, 8\/>—|—2\/i—16\/> 16y |

15\7 )

2V2 /"
Table 6. Edge Partition of EX (m,n) based on
vertices degree sum which are located at unit
distance from the final vertices of each edge.

(Sy,Sy)where Number of edges
uv € E(G)

0| 0| | 0| ~|00|C0

8
2(m+n—10)
2(m+n—28)

(6m —6n—56)
(6m+ 61— 56)
(4mn — 19m — 191+ 90)

Theorem 4.2 For m,n > 5, GA(EX (m,n)) =4mn+

(210 9)m+(24f 9)n + (2V/15 + 16¥6 _
128\F+22)

Proof. To compute the GA index of the graph
G = EX(m,n) , use the edge partition given in Table

510 get GA(G) = Luer(o) 2514 = 8% 235> +

4x 238 4 (6m+6n—32) x 228 4 2 (m4n—

3+8 5+8
4) x 2223 4 (dmn— 1lm — 11n+30) 2358

simple calculation implies GA(EX(m,n)) =

4mn + (24‘F 9)m + (24‘F Nn + (2V15 +

161—\{ 128\F +22) The next two results are about

the computatlon of the ABC4 and GA5 indices of the
graph of EX (m,n). We give the edge partition of a
graph G, where G = EX (m,n), based on the degree
sum of the final vertices of each edge in the follow-
ing table.

Theorem 4.3 For m,n > 5, the ABCy4 index of
EX(m,n) is computed as

ABC4(EX(m n) = (2 ymn+ (233 4 125 4

87 57\/ 2\F 12\f 9\ﬁ

57\/ 61
6 1870 32\[11—1— 8\/ —1—8 936 +4 94—|-

10
8 159s+8 \F+16 57 +8 1598Jr
20133 963 /13
8 1363_ 17\g_%_21 356 1870Jr
135xf)
16v2 7"

Proof. By following the data in Table 6, we have

u v 2
ABCY(G) = Eumera) /35572 =8/ 5552 +
8 29+34-2 + 4 184+47-2 + 8 29+455-2 +

29%34 18x47 29%55
29+429-2 474642 474552
4 29x29 + 4 47x64 + 8 47x55 +

344472 294472 344342
8\/ 34 4T +8\/ War T 2(mAn—10)\/ 55

2(m+n—8)y /332 4 (6m+6n—56), /T2 4

(6m + 6n — 56)/ 33222 + (4mn — 19m — 19n +

64+64—2
90)\/ "ot -

ABC4(EX(m n)) = (;@mn 4 (%3;3 + 126 4
87 57\/ 2\F 12\/ 9\ﬁ
+6 1870 ~ 32" 17\f+ + 4\ﬁ+

57\/ 61
6 1870 32\[n—|— 8\/ + 8 936 +4 94—|-

10
8 1595Jr8 §7+16 577 +8 1598Jr
20133 963 /13
8 1363_ 17\/\/;_%_21 356 1870Jr
135f)
16v2 7"

Theorem 4.4 For m,n > 5, we have

GAs(EX(m,n)) = 4mn + (12\/W 1161899)’” +

121870 689 48 16\/98 2494
(20 — 8 + (B + + 2

4/1595 + 4/841 + 64\F + 8\/258 16\/1598 .
21 29 111 51 31

+
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41363 _ 1121870 + 5530)
19 89 119

Proof. The information in Table 6 leads us to the
required result.

GAs(G) = Luer) 2515 = 8 % Nghss +

Su+Sy 18429
8x2@+4x72‘{£?+8x2‘2/922?+4x
2387 4 8 x WM 4 2 (mtn—10) x 22838
2(m +n — 8) x 2B 4 (6m + 6n — 56) x

ATE ¢ (om-+ 60— 50 x P + (omn -

2v/64x64
19m — 191 +90) x 2164,

After simplification,we get

GAs(EX (m,n)) = 4mn + (12870 — 1689y, +
124/1870 1689 48/58 161/986 24,/94
(Fm— — et (557 + 250 + 5
4/1595 + 4./841 + 64/47 + 8v/2585 + 16/1598

21 29 111 51 81
4/1363 _ 112V/1870 + m)
19 89 119 /-

S Rectangular tetra sheets network

In this Section, we compute the ABC, ABCjy,
GA, and GAs indices of a graph of rectangular tetra
sheet network.

5.1 Construction of Rectangular Tetra
Sheet

Draw a grid graph P,,P, of dimension (m,n).
Join the diagonal vertices of the paraellelogram so
that each rectangle is divided into two triangles. Re-
place each triangle K3 by K4 , the resulting graph is
known as the graph of rectangular tetra sheet net-
work and is denoted by RT'S(m,n), (see Figure 4).
In this graph, the number of vertices and edges are
3mn—2(m+n)+2 and 9mn — 8n — 8m+7 respec-
tively.

In the next two theorems, we compute the ABC
and GA indices of the graph of rectangular tetra
sheet network by using the edge partition given in
the following table.

Table 7. Edge partition of RT S(m,n). It depends
on the degrees of the final vertices located at unit
distance of each edge.

(dy,d,) where Number of Edges
uv € E(G)
(3,3) 2
(5,7) 4
(5,12) 2
(3,5) 4
(3,7) 6m+6n—20
(3,12) 6mn—12m — 12n+24
(7,7) 2m+2n—10
(7,12) Am~+4n—20
(12,12) 3mn —8m—8n+21

Figure 4. The graph of rectangular tetra sheet
RTS(m,n) where m=5 and n=6

Theorem 5.1 Let G = RT S(m,n). Then, for m,n >
3, the ABC(G) is

ABC(G) = (V13 + Y2)mn + [3y/3 + 4/42 -
V22 =213 + £V/357|(m +n) %+ 3V14 +
V10 + 4v13 — 10357 —2V3 — PVa2 +
V241
Proof.
7 in ABC(G) = Yuer() \/ %552, we have

_ 343-2 5+7-2 5+12-2
ABC(G) - 2\/ —g><3 +4\/ —5~_><7 +2 —g><12 +

4y/3322 + (6(m — 2)(n — 2)) /322 + (4m +

4n — 20)(/ 222 4 (2m + 2n — 10)/ 22
(6m + 6n — 20)\/ 32 + (3mn — 8m — 8n +

Put the information given in Table

124+12-2
21) 12x12

Further simplification reduces the above expres-
sion to the following form

ABC(G) = (V13 + Y2)mn + [4v/3 + 4v/42 —
3V22 - VI3 4 SV3STI(m ) § 4+ 514+
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V10 + 4V13 — 10357
V2241
Theorem 5.2 Let G = RTS(m,s). Then, for m,n >
3, the GA(A) is

GA(G) = [Z]mn + [$v21 + 1821 — £ —
6m + [2v21 + 18v21 — £ — 6]n + 3V35 +
BV15-3921-4v21+ 18
Proof.  Put the information given in Table 7 in

GA(G) = LwE(6) 2 (ﬂ) , we have

— V42 +

GA(G) = 2 x 24/35 +4 x 24/ +2 x

24/ B +4X 2/ 33 +(6m+6n—20) x 2\ /357

+(6mn—12m — 12n+424) x 2, /345 +(2m+2n—

10) x 24/ 22T +(4m+4n—20) x 24/ 2233 +(3mn—

[12x12
8m—8n+21) x 2,/ 5575

After simplification, we get

GA(G) = [Z]mn + [$V21 + 1821 — £ —
6lm + (V21 + 1821 — 8 — 6n + 235 +
BV15-3921-4v21+ 18

In the table below, we give the edge partition
of a graph G = RT'S(m, s) based on vertices degree

sum which are located at unit distance from the final
vertices of each edge.

In the next two results, we calculate the ABCy
and GAs indices for a graph G of rectangular tetra
sheet RT S(m,n).

Theorem 5.3 For m,n > 6, the formula for ABCy
index of the graph G = RTS(m,n) is

ABC4(G) = Y2310 4 Y1781, 1 [ 2.\/R76762 +
2845 + /27683 4 A3 4 o0
EV310 + EV92 4+ VAT + EV2l -
SV (m + n) + EvV2 + 5351/34328

N
_l_
<&~ 3
—
n
o0
[\)
(98]
o0

55115 V117530 9 _
365 + 730 T 40 158

Table 8. Table 8: Edge Partition of a graph G =
RTS(m,n) based on vertices degree sum which are
located at unit distance from the final vertices of

each edge.
(Su,Sy) where Number of edges
uv € E(G)

(17,17) 2
(17,38) 8
(38,38) 2
(38,47) 4
(38,70) 4
(24,32) 4
(24,45) 4
(24,73) 4
(32,45) 4
(32,73) 2
(26,38) 8
(26,45) 4
(26,47) dm+4n—32
(26,70) 6
(26,80) 2m+2n—16
(31,45) 4
(31,47) 2m+2n—16
(31,70) 4
(31,73) 4
(31,80) 4m+4n—32
(36,70) 2
(36,73) 4
(36,80) 6m+6n — 48
(36,90) 6mn —24m — 24n+ 96
(45,47) 4
(45,73) 4
(45,80) 4
(47,47) 2m—+2n—20
(47,70) 4
(47,80) 4m+4n —36
(70,80) 4
(73,80) 4
(73,90) 2
(80,80) 2m+2n— 18
(80,90) Am+4n—36
(90,90) 3mn— 14m — 14n+ 65




30 F E. Alsaadi, S. A. Ul Haq Bokhary, A. Shah, U. Ali, J. Cao, M. O. Alassafi, M. U. Rehman, J. U. Rahman

Proof. Based on the information given in Table 8,
we compute the ABCy index of G as follows

ABCI(G) =Tuneria) /5 =2/ T +

B+ 2T e/
WEER + B ¢ oS
[ 47+38—2 26+38-2 26+45-2
4 47%x38 + 8 26x38 + 4 26x45 +

384702 244732 324732
4\/ 3870 +4\/ w73 T2 Tanas +(4mt

4n - 32) /B2 + 6,/588%2 + (2m + 20 -
26+80—2 314+45-2
16)/ 2555 + 4/ 505 + 2m + 2n —

314472 314702 314732
16)\/ 50 "’4\/ 31x70 +4\/ 3t73. T (4m+
314802 36+70-2 36+73-2
4n —32)\/Srm "’2\/ 3670 +4\/ 36x73 T

(6m + 6n — 48) /35892 4 (6mn — 24m — 24n +

364902 454732 454802
9)\/Soon T 4w W s
+(2m -+ 20— 20)\/THT2 14 [T 4 (4 +

474802 704802 734802
4n —36)\/ “Frs +4\/ 7080 +4\/ g0+

2,/ B9S2 4 (2m + 2n — 18) /34802 (4m +

4n — 36)\/ N2 4 (3mn — 14m — 14n +
/90+90—2

65)1/ “5000"
Further simplification give us the re-

quired result ABC4(G) = [@ + @]mn +

(25 V/876762 + & /845 + 174-1/27683 + 16895 4
VS0 4310 + 292 + SVAT + 221 -
=VIT8)(m + n) + Sv2 4+ 54/34328 +

VI V148238 + 270490 + 3v2 +
m+m+@+m+% 15314 +

45 219 292
5551/26910 V86762 + 3%1/42770 —

4 4 32 6
/8454 A V/T1470 - 32,7/27683 + 185 1/23870+

V230826 — 3./16895 + 2.V/455 +
s5VI8IT — 2570 + {8V310 + Vo4 +

8 V123 20 2
Toos V 10585 + 5= — V92 + 55V 15134 —
5

I
45 /47 4 V518 | VSIS \/171370530 B % 158 —

Theorem 5.4 For m,n > 6, the GAs index of a graph
G = RTS(m,n) is

GAs(G) = [2V10 + 3]mn + [£v1222 +
EV65 + V5 — V10 + 55v235 + BV2 +
21457 + 32/155 — 11](m + n) + 18/646 +
5 /TT86 -+ 810+ 15 146 4+ 101/3 1 19/30 +

VAT 4 B /TT70 — $4/1222 + Y455 — 64./65
SV155+ 270+ /73 — 305+ 122/10 +
£V235 + 12/365 + 5/3290 — 28235 +
1814+ 32365+ {43730 — £2/2 4+ 25/10+
2VA38 — 1SVI1457 + V2170 4+ VES -
230 /155+ 28 +61.

Proof. By following the instructions about the edge

partitioning in Table 8, we compute the GAs index
of the graph G as follows

GAs(G) = F5 = Il 50 4 T8
(8)+2@x2+72@x4+72\3/ﬁx
4+2@x4+2%x4+2\{ﬁ?x
4+2‘3/ﬁ?x4+2‘3/ﬁ?x2+2@x
8 4 2020585 o 4 4 20T o (4 + dn — 32) +

236570 21/26x80
%0 X 6+ Toig X (2m+ 20— 16) +

2,/31x45 2/31x47
Sias. X 4+ S X (2mo+ 20— 16) +

2/31x70 231X73 2/37x80

5o X4+ i X4+ i X (m+
B 2/36x70 2V/36x73 2,/36x80

4n—32) + g X 2+ Sy XA+ Ty X

(6m + 6n — 48) + 22530 x (6mn — 24m —

2/A5%47 2VA5xT3 | 2./45%80
24n +96) + ST X4+ Fag + Tisis0 X

4+ BT @m +2n = 20) + 2EEE < 4+

2V/A7%80 2/70%80
471?0 x (4m + 4n — 36) + 7g+§0 x4+

2y/73x380 2/73%90 2,/80x80
Yars0 X4+ S0 X2+ Sogs0 X (2m+2n—

18) + 2680530 < (4m+4n—36) + 25220 x (3mn—

14m — 14n+65).
Further simplification give us the required result

GAs(G) = [2V10 + 3Jmn + [£V1222 +
EV65 + V5 — BV10 + V235 + BvV2 +
21457 + 22/155 — 11](m + n) + £V/646 +
5 V1786 + 38V10+ 155 V/146 + L0v/3 4+ 5V/30 +
V2 1 81170 — $4V/1222 + V455 9/65 +
SVIS5+ 270+ 8/73 - 36/5+ 192/10 +
5V235 + /365 + 135v/3290 — 38235 +
1814+ 22/365+ {2 /730 — 42/2 4+ 28/10+
2Va3g — /1457 + B.v2170 + Y28
20V155+ 38 +61.

6 Conclusion

In this article, we have done computation of
some degree based topological indices for certain
networks sheets. As a consequence, we got formu-
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las for these networks. We hope this will help peo-
ple in the field of network science understand and
explore the basic topology of these chemical net-
works.

For future work, we plan or study the design of
some new architectures / networks and their topo-
logical properties which play an important role to
understand their underlying topologies.
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